Five-Year Review Report

Fourth Five-Year Review Report for Smith's Farm EPA ID KYD097267413

Brooks Bullitt County, Kentucky

September 2011

Prepared By: Skeo Solutions 921 Second Street SE Charlottesville, Virginia 22902

For:
United States Environmental Protection Agency
Region 4
Atlanta, Georgia

Approved by:

Franklin E. Hill

Director, Superfund Division

U.S. EPA, Region 4

Five-Year Review Report

Fourth Five-Year Review Report for Smith's Farm EPA ID KYD097267413

Brooks Bullitt County, Kentucky

September 2011

Prepared By: Skeo Solutions 921 Second Street SE Charlottesville, Virginia 22902

For: United States Environmental Protection Agency Region 4 Atlanta, Georgia

Fourth Five-Year Review Report

for

Smith's Farm

Smith Farms Landfill Rd, Brooks, KY 40165 Bullitt County, Kentucky

List of	Acronyms	4
Executi	ive Summary	5
Five-Y	ear Review Summary Form	10
	oduction	
2.0 Site	Chronology	15
3.0 Bac	kground	16
3.1	PHYSICAL CHARACTERISTICS	16
3.2	LAND AND RESOURCE USE	20
3.3	HISTORY OF CONTAMINATION	
3.4	Initial Response	
3.5	Basis for Taking Action	22
4.0 Ren	nedial Actions	23
4.1	REMEDY SELECTION	23
4.2	REMEDY IMPLEMENTATION	
4.3	OPERATION AND MAINTENANCE (O&M)	32
5.0 Pro	gress Since the Last Five-Year Review	34
5.1	ERODED AREAS OF CAP	35
5.2	Stressed Vegetation	35
5.3	PLOT CONTAMINANT CONCENTRATIONS ON SITE MAP	35
5.4	Gaseous Emissions	
5.5	Trespassing and Vandalism Control Measures	35
5.6	INCLUDE A COMPARISON OF DETECTION LIMITS AND REPORTING LIMITS TO PERMIT	~ -
5.7	LIMITS	
5.7	PLOT INFLUENT AND EFFLUENT CONCENTRATIONS VERSUS TIME	
6.0 Five	e-Year Review Process	37
6.1	Administrative Components	37
6.2	COMMUNITY INVOLVEMENT	37
6.3	DOCUMENT REVIEW	
6.4	Data Review	
6.5	SITE INSPECTION	
6.6	Interviews	48
7.0 Tec	hnical Assessment	50
7.1	QUESTION A: IS THE REMEDY FUNCTIONING AS INTENDED BY THE DECISION	
	DOCUMENTS?	50

7.2	QUESTION B: ARE THE EXPOSURE ASSUMPTIONS, TOXICITY DATA, CLEANUP LEVI	
	REMEDIAL ACTION OBJECTIVES (RAOS) USED AT THE TIME OF REMEDY SELECTION	
7.0	STILL VALID?	
7.3	QUESTION C: HAS ANY OTHER INFORMATION COME TO LIGHT THAT COULD CALL	
7.4	QUESTION THE PROTECTIVENESS OF THE REMEDY?	
8.0 Issu	ues	55
9.0 Rec	commendations and Follow-up Actions	56
10.0 Pr	otectiveness Statements	58
11.0 No	ext Review	59
Appen	dix A: List of Documents Reviewed	A-1
Appen	dix B: Press Notice	B-1
Appen	dix C: Interview Forms	C-1
Appen	dix D: Site Inspection Checklist	D-1
Appen	dix E: Photographs from Site Inspection Visit	E-1
Appen	dix F: 2009 ESD Institutional Control Boundaries	F-1
Appen	dix G: Ground Water Monitoring Trend Graphs	G-1
Appen	dix H: Effluent Sampling Results	H-1
Tables		
	: Chronology of Site Events	15
	: OU2 Leachate/Surface Water Remediation Levels	
	: Annual O&M Costs	
Table 4	: Progress on Recommendations from the 2006 FYR	34
	: Surface Water Discharge Requirements	
	: Deed Documents from Bullitt County Public Records Office	
	: Institutional Control (IC) Summary Table	
	: Current MCLs for Detected Ground Water COCs	
	: Current Site Issues	
Table 1	0: Recommendations to Address Current Site Issues	56
Figures	S	
	1: Site Location Map	
	2: Detailed Site Map	
S17-203	3: OU1 Detailed Map	
_	4: OU2 Detailed Map	
Figure :	5: May 2009 and May 2010 Ground Water Organic Compound Sampling Results	43

List of Acronyms

1.2-DCE 1,2-dichloroethene μg/L micrograms per liter

AOC Administrative Order on Consent

ARARs Applicable or Relevant and Appropriate Requirements

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act

CFR Code of Federal Regulations

CIC Community Involvement Coordinator

COC Contaminant of Concern

CRDL Contract Required Detection Limit

EPA United States Environmental Protection Agency

ESD Explanation of Significant Differences

FYR Five-Year Review

HDPE High Density Polyethylene

IC Institutional Control

KDEP Kentucky Department of Environmental Protection KPDES Kentucky Pollutant Discharge Elimination System

LDPE Low Density Polyethylene
MCL Maximum Contaminant Level
MCLG Maximum Contaminant Level Goal

MDW Main Drainage Way mg/L milligrams per liter ng/L nanograms per liter

NCP National Oil and Hazardous Substances Pollution Contingency Plan

NPDES National Pollutant Discharge Elimination System

NPL National Priorities List
O&M Operation and Maintenance

OU Operable Unit

PAH Polycyclic Aromatic Hydrocarbon

PCB Polychlorinated Biphenyl
PRG Preliminary Remediation Goal
PRP Potentially Responsible Party
RAO Remedial Action Objective

RCRA Resource Conservation and Recovery Act RI/FS Remedial Investigation/Feasibility Study

ROD Record of Decision

RPM Remedial Project Manager

SARA Superfund Amendments and Reauthorization Act

SDWA Safe Drinking Water Act

SVOCs Semi-volatile Organic Compounds

TBC To-Be-Considered TCE Trichloroethene

UAO Unilateral Administrative Order VOCs Volatile Organic Compounds

Executive Summary

Introduction

The Smith's Farm site (the Site) is located in Brooks, Bullitt County, Kentucky. The Site originally consisted of an approximately 80-acre unpermitted former drum disposal area; an approximately 40-acre formerly permitted construction debris landfill; and several smaller, isolated disposal areas where unpermitted disposal of hazardous waste occurred over at least a 30-year period. The Site was used from the 1950s until 1989 for the disposal of local construction debris, municipal solid waste and commercial / industrial waste from businesses and manufacturing facilities in the Louisville area. Spent paint thinners, off-specification paints, paint booth sludges, metal shavings from machining operations, asbestos, off-specification epoxies, and waste motor and transmission fluids are some of the contaminated materials that were disposed of at the Site. Contaminants included a wide variety of volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs) as well as heavy metals. The disposal activities in both areas of the Site resulted in contamination of ground water, sediment, soil, and surface water. The United States Environmental Protection Agency (EPA) proposed the Site to the National Priorities List (NPL) in October 1984 and finalized the Site on the NPL in June 1986. The Site is being addressed in two Operable Units (OUs): OU1 (unpermitted former drum disposal area) and OU2 (formerly permitted inert industrial wastes from landfill and smaller isolated disposal areas). The triggering action for this Five-Year Review (FYR) was the signing of the previous FYR on September 20, 2006.

Remedy Components

A Record of Decision (ROD) describing the cleanup approach for OU1 was issued in 1989 and amended in 1991. The cleanup approach for OU1 addressed containment of contaminated soil, sediment, ground water in the surficial aquifer, and drums in the vicinity of the unpermitted drum disposal area. The ROD describing the cleanup approach for OU2 was issued in 1993. The cleanup approach for OU2 addressed landfill wastes, leachate, leachate sediment, surface soil, ground water and surface water.

Although the RODs did not define remedial action objectives (RAOs), the remedial actions in the 1989 OU1 ROD were selected to:

- Reduce risks posed by direct contact with study area soils contaminated with
 polychlorinated biphenyls (PCBs) and lead, study area sediments contaminated with
 polycyclic aromatic hydrocarbons (PAHs) and PCBs, and inhalation of organics and
 PCBs from surface water within the study area.
- Collect and treat leachate to eliminate or greatly reduce the accumulation of leachate that might still be generated as a result of leaking, buried drums within Area A. (The contaminant source area was determined to be a large area of buried drums on both sides of the ridge in the southern portion of the Remedial Investigation (RI) study area).
- Contain contaminants within Area B (a smaller, additional drum burial area just north of Area A), thereby eliminating or greatly reducing infiltration of rainfall into the surface water and surficial ground water, as well as the direct contact exposure pathways.

• Design and construct the cap to minimize the amount of leachate generation, promote drainage, minimize erosion of the cover, and provide long-term minimization of migration of liquids through the underlying drums and soil.

The major tasks comprising the selected remedy in OU1 ROD (modified by the September 1991 ROD Amendment) included:

- Excavation of contaminated soil, surface drums, buried drums and fill material from the main OU1 area of contamination.
- Excavation of contaminated sediments from the intermittent valley streams.
- Construction of an 11-acre landfill at the main OU1 area of contamination.
- On-site base-catalyzed thermal desorption of the excavated contaminated soils and sediments.
- Solidification and on-site disposal of treated soils and sediments that have excessive
 concentrations of lead, and on-site disposal of soils and sediments that do not have
 excessive levels of lead.
- Installation of retaining walls at the east and west toes of the hill that represents the main OU1 area of contamination, and consolidation and contouring of treated backfill and clean material in that area.
- Installation of east and west leachate collection and conveyance lines in the new landfill, and installation of leachate collection tanks at the southernmost end of the new landfill.
- Installation of a Resource Conservation and Recovery Act (RCRA)-type cap and cover system on the new landfill, construction of perimeter fences with warning signs, and imposition of land use deed restrictions.
- Monitoring of shallow ground water for 30 years.

The purpose of the 1993 OU2 remedy was to reduce the risk associated with exposure to the contaminated on-site surface soils; contaminated on-site surface and ground waters; contaminated on-site stream sediments; and contaminated, on-site leachate and leachate sediments.

The major tasks comprising the selected remedy in the OU2 ROD included:

- The extinguishing of the subsurface landfill thermal anomalies, if necessary.
- The consolidation within the landfill of peripheral, contiguous areas of landfill material.
- The installation of a leachate collection system at the bedrock surface along the entire
 east and south sides of the landfill, which diverts leachate to a collection tank and then to
 a multi-stage treatment system which then discharges treated, cleaned liquid to the
 Unnamed Tributary, and which will be operated for at least 30 years after construction is
 complete.
- The installation of a multi-layer, RCRA-type cap and cover system with attendant run-on and run-off systems.
- The installation of perimeter fencing, lockable gates, and warning signs, and the imposition of deed restrictions and water use restrictions.
- Monitoring of shallow ground water and treatment plant effluent for 30 years.

Technical Assessment

The review of documents, applicable or relevant and appropriate requirements (ARARs), risk assumptions and the site inspection indicate that the Site's remedy is functioning as intended by site documents. The cleanup actions for OU1 were completed in November 1995 and operation and maintenance (O&M) activities began immediately thereafter. The OU1 cleanup activities resulted in the thermal treatment of 21,000 cubic yards of contaminated soils and the construction of an 11-acre capped landfill with a leachate collection system. The cleanup actions for OU2 were completed in September 1998 and resulted in the proper consolidation and capping of the 40-acre, formerly permitted landfill, and the construction of a leachate treatment plant. The leachate collection tanks at the OU1 area were connected to the influent feed of the leachate treatment plant via a force main double-walled pipeline. The connection eliminated the need to haul OU1 leachate by truck to the OU2 leachate treatment plant or to an off-site disposal facility. OU1 and OU2 are each secured and fenced and a security camera system is in place to prevent vandalism and trespassing.

Institutional controls in the form of a 1999 restrictive covenant prevent residential or commercial development or any activity that will result in disturbance of the land surface. The restrictive covenant also restricts ground water and surface water use on site, but it is unclear if contaminated ground water is affecting surface water. A 2009 Explanation of Significant Differences (ESD)was prepared for the Site that reduced the scope of the land use restriction to the fenced areas of the two OUs plus an 80-foot buffer around each fenced area. However, an updated restrictive covenant was not located at the Bullitt County records office, so the 1999 restrictive covenant remains in effect across the entire property. If the land use is proposed to change to residential in the area that is within the property boundaries but outside of the OU fenced areas, and that property is found to be contaminated, then the deed restriction will need to be modified or terminated and an Environmental Covenant pursuant to KRS 224 Subchapter 80 will need to be filed with approval of both EPA and Kentucky Department of Environmental Protection (KDEP). In addition, the existing 1999 restrictive covenant is not associated with land transfers and should be referenced in future transfers and deeds related to this property.

On May 28, 2008, drums were observed at a location outside of the capped landfill area at OU1. It was initially thought to be six to 13 drums, but when the drum characterization and removal was completed in September 2009, a total of 319 drums, scraps and carcasses were removed. If drums are found in the future, EPA and KDEP should immediately be notified.

During the FYR site inspection, additional exposed drums were observed outside of the OU1 fenced area. The potentially responsible party (PRP) should work with EPA and KDEP to perform a removal of the drums and contaminated soils associated with the drums. The O&M contractor has had difficulty gaining access from the property owner to the Site outside of the fenced areas. Access agreements between the PRP and the property owner should be evaluated to ensure the PRP has access to any drums found outside of the fenced landfill areas.

The Site and portions of the Site have changed ownership since remediation started and the site property area has variously been described as 560 acres, 500 acres, 480 acres, and 460 acres in

site documents. Also, the OU boundaries have not been described in a consistent fashion. The current fenced area at OU1 is not collocated with the original OU1 boundary. The current, accurate site property and OU boundaries should be identified.

The ROD identified Kentucky Pollutant Discharge Elimination System (KPDES) 401 KAR 5:005 as an ARAR for surface water. A letter from the State on July 10, 1997 indicated that KPDES permit requirements were waived, contingent on site effluent meeting the criteria in the letter's attachment. In addition to the risk-based standards for 11 constituents identified in the ROD, the 1997 letter specified effluent standards for an additional 26 contaminants that must be met at the Site. The effluent standards have been updated since the ROD was issued and the Site is currently compliant with the updated effluent standards.

The OU2 ROD states that ground water monitoring requirements must comply with Sections 10 and 11 of 401 KAR 34:060, which states that "[s]hould the ground water monitoring at the Site indicate that the [maximum contaminant levels/maximum contaminant level goals (MCLs/MCLGs)] are consistently exceeded, then an appropriate corrective action will be applied to comply with the MCLs and MCLGs." VOCs and SVOCs have been detected above MCLs in ground water under the Site and residential use is being considered outside of the fenced area at the Site. The Site should be evaluated to determine if a ground water corrective action is necessary. Should a structure be built on the Site (e.g., a residence), the vapor intrusion potential should be evaluated.

EPA's dioxin reassessment has been developed and undergone review over many years with the participation of scientific experts in EPA and other federal agencies, as well as scientific experts in the private sector and academia. The Agency followed current cancer guidelines and incorporated the latest data and physiological/biochemical research into the assessment. The results of the assessment have currently not been finalized and have not been adopted into state or federal standards. EPA anticipates that a final revision to the dioxin toxicity numbers may be released by the end of 2011. In addition, EPA has proposed to revise the interim preliminary remediation goals (PRGs) for dioxin and dioxin-like compounds, based on technical assessment of scientific and environmental data. However, EPA has not made any final decisions on interim PRGs at this time. Therefore, the dioxin toxicity reassessment for the Site will be updated during the next FYR.

Conclusion

The remedy at both OU1 and OU2 currently protects human health and the environment in the short term because drums and contaminated soils were consolidated and capped on site, institutional controls are in place to prevent inappropriate use of the land, and nearby residents are on municipal water. However, in order for the remedy to be protective in the long term, the following actions need to be taken to ensure long-term protectiveness:

- Remove drums found during the site inspection and any contaminated soil associated with the drums.
- Evaluate the Site to determine if contaminated ground water is affecting the surface water.

- Evaluate the Site to determine if a ground water corrective action is necessary.
- Evaluate the potential for vapor intrusion in a hypothetical structure built on the Site outside of the fenced areas (using modeling).
- Define the current, accurate site property boundary.
- Using historical documents, resolve OU1 and OU2 area and boundary discrepancies and map the original, historical boundaries in future annual O&M reports and any other Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) documents.

Five-Year Review Summary Form

SITE IDENTIFICATION						
Site name (from CERCLIS): Smith's Farm						
EPA ID (from CER	EPA ID (from CERCLIS): KYD097267413					
Region: 4	State: KY	City/County: Brooks/Bullitt				
		SITE STATUS				
NPL status: X F	inal Deleted	Other (specify)				
Remediation statu	s (choose all that app	ply): Under Construction Operating Complete				
Multiple OUs?∗ ∑	YES NO	Construction completion date: 9/23/1998				
Has site been put	into reuse? 🔲 YE	S 🛛 NO				
		REVIEW STATUS				
Lead agency: 🛛	EPA 🗌 State 🗌	Tribe Other Federal Agency				
Author name: Joh	nny Zimmerman-	-Ward and Rhode Bicknell				
Author title: Asso	ciates	Author affiliation: Skeo Solutions				
Review period**:	01/20/2011 to 09	9/20/2011				
Date(s) of site insp	oection: 04/16/201	1				
Type of review:		3 5 6 6 8				
	⊠ Post-SARA	Pre-SARA NPL-Removal only				
<u>I</u>	Non-NPL Reme					
1	Regional Discre					
Review number: 1 (first) 2 (second) 3 (third) Other (specify) 4 (fourth)						
Triggering action:	<u> </u>					
1		e Construction at OU#				
Ī	Construction Com	upletion Previous Five-Year Review Report				
Į.	Other (specify)					
	s cyc make comment-setting					
Triggering action date (from CERCLIS): 9/20/2006						
Due date (five year:	s after triggering acti	<i>ion date)</i> : 9/20/2011				

^{* [&}quot;OU" refers to operable unit.]

** [Review period should correspond to the actual start and end dates of the Five-Year Review in CERCLIS.]

Five-Year Review Summary Form (continued)

Issues:

- 1) Remains of drums outside the fenced area were observed during the site inspection.
- 2) It is unknown if contaminated ground water is affecting surface water.
- 3) The OU2 ROD states that ground water monitoring requirements must comply with Sections 10 and 11 of 401 KAR 34:060, which states that "[s]hould the ground water monitoring at the Site indicate that the MCLs/MCLGs are consistently exceeded, then an appropriate corrective action will be applied to comply with the MCLs and MCLGs." Contaminants are detected above MCLs and are increasing at some monitoring wells in site ground water sampling.
- 4) VOCs have been detected in site ground water monitoring wells and the future use of portions of the Site might be residential. The potential for vapor intrusion has not been evaluated.
- 5) The Site and portions of the Site have changed ownership since remediation started and the site property area has variously been described as 560 acres, 500 acres, 480 acres, and 460 acres in site documents.
- 6) Historical documents, including the 1989 remedial investigation (RI), describe OU1 as an 80 acre disposal area and OU2 as a 37.5 acre landfill. More recent documents refer to OU1 and OU2 as a combined total of 80 acres. The OU boundaries are not described in a consistent fashion.

Recommendations:

- 1) Remove drums found during the site inspection and any contaminated soil associated with the drums.
- 2) Evaluate the Site to determine if contaminated ground water is affecting the surface water.
- 3) Evaluate the Site to determine if a ground water corrective action is necessary. Further characterization of the ground water contamination plume may be part of the evaluation.
- 4) Evaluate the potential for the vapor intrusion in a hypothetical structure built on the Site outside of the fenced areas (using modeling).
- 5) Define the current, accurate site property boundary.
- 6) Using historical documents, resolve OU1 and OU2 area and boundary discrepancies and map the original, historical boundaries in future annual O&M reports and any other CERCLA documents.

Protectiveness Statement(s):

The remedy at both OU1 and OU2 currently protects human health and the environment in the short term because drums and contaminated soils were consolidated and capped on site, institutional controls are in place to prevent inappropriate use of the land, and nearby residents are on municipal water. However, in order for the remedy to be protective in the long term, the following actions need to be taken to ensure long-term protectiveness:

- Remove drums found during the site inspection and any contaminated soil associated with the drums.
- Evaluate the Site to determine if contaminated ground water is affecting the surface water.
- Evaluate the Site to determine if a ground water corrective action is necessary.
- Determine the potential for vapor intrusion potential in a hypothetical future structure built on the site
 outside of the fenced areas.
- Define the current, accurate site property boundary.
- Using historical documents, resolve OU1 and OU2 area and boundary discrepancies and map the original, historical boundaries in future annual O&M reports and any other CERCLA documents.

Five-Year Review Summary Form (continued)					
Other Comments:					
Environmental Indicators - Current human exposures at the Site are under control. - Not a ground water site.					
Are Necessary Institutional Controls in Place? ☑ All ☐ Some ☐ None					
Has the Site Been Designated as Site-Wide Ready for Anticipated Use? Yes No					

Fourth Five-Year Review Report for Smith's Farm Superfund Site

1.0 Introduction

The purpose of a Five-Year Review (FYR) is to evaluate the implementation and performance of a remedy in order to determine if the remedy will continue to be protective of human health and the environment. The methods, findings and conclusions of FYRs are documented in FYR reports. In addition, FYR reports identify issues found during the review, if any, and document recommendations to address them.

The United States Environmental Protection Agency (EPA) prepares FYRs pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Section 121 and the National Oil and Hazardous Substances Pollution Contingency Plan (NCP). CERCLA Section 121 states:

"If the President selects a remedial action that results in any hazardous substances, pollutants, or contaminants remaining at the site, the President shall review such remedial action no less often than each five years after the initiation of such remedial action to assure that human health and the environment are being protected by the remedial action being implemented. In addition, if upon such review it is the judgment of the President that action is appropriate at such site in accordance with section [104] or [106], the President shall take or require such action. The President shall report to the Congress a list of facilities for which such review is required, the results of all such reviews, and any actions taken as a result of such reviews."

EPA interpreted this requirement further in the NCP; 40 Code of Federal Regulations (CFR) Section 300.430(f)(4)(ii), which states:

"If a remedial action is selected that results in hazardous substances, pollutants, or contaminants remaining at the site above levels that allow for unlimited use and unrestricted exposure, the lead agency shall review such actions no less often than every five years after the initiation of the selected remedial action."

Skeo Solutions, an EPA Region 4 contractor, conducted the FYR and prepared this report regarding the remedy implemented at the Smith's Farm site (the Site) in Brooks, Bullitt County, Kentucky. This FYR was conducted from January to September of 2011. EPA is the lead agency for developing and implementing the remedy for the Potentially Responsible Party (PRP)-financed cleanup at the Site. The Kentucky Department of Environmental Protection (KDEP), as the support agency representing the Commonwealth of Kentucky, has reviewed all supporting documentation and provided input to EPA during the FYR process.

This is the fourth FYR for the Site. The triggering action for this statutory review is the 2006 FYR. The FYR is required due to the fact that hazardous substances, pollutants or contaminants

remain at the Site above levels that allow for unlimited use and unrestricted exposure. The Site consists of two Operable Units (OUs), both of which are addressed in this FYR.

2.0 Site Chronology

Table 1 lists the dates of important events for the Site.

Table 1: Chronology of Site Events

Event	Date	
Landfill waste operation began	1950s	
EPA discovered contamination	February 1, 1980	
EPA completed preliminary assessment	June 1, 1982	
EPA-lead removal started	June 18, 1984	
Commonwealth of Kentucky performed site inspection	August 1, 1984	
EPA-lead removal completed	August 17, 1984	
EPA proposed Site to National Priorities List (NPL)	October 15, 1984	
Site listed on NPL	June 10, 1986	
EPA issued notice letters to PRPs and started Remedial	March 15, 1987	
Investigation/Feasibility Study (RI/FS)	EUT CLUMBERGER STERNEN STERNE	
EPA completed RI/FS	April 15, 1987	
Combined RI/FS for OU1 started	April 3, 1989	
Section 107 litigation started	September 7, 1989	
EPA completed combined RI/FS for OU1 and signed Record of Decision	September 29, 1989	
(ROD) for OU1		
PRP started RI/FS for OU2	November 9, 1989	
EPA signed an Administrative Order on Consent (AOC) for OU1	November 13,1989	
EPA started remedial design/remedial action negotiations for OU1	December 20, 1989	
EPA completed remedial design/remedial action negotiations and signed	March 14, 1990	
a unilateral AOC for OU1	*	
PRP remedial design started for OU1	May 4, 1990	
EPA performed a site-wide removal assessment and signed a ROD	September 30, 1991	
amendment for OU1	**	
PRP remedial design for OU1 completed	April 4 1992	
PRP started remedial action for OU1	May 20, 1993	
PRP completed RI/FS and EPA signed ROD for OU2	September 17, 1993	
EPA issued notice letters to PRPs for OU1 and remedial action/remedial	October 29, 1993	
negotiations for OU2 started		
EPA completed remedial action/remedial negotiations and signed a	April 22, 1994	
unilateral AOC for OU2. PRP completed remedial action for OU1.	-	
PRP started remedial design for OU2	June 1, 1994	
PRP completed remedial design and started remedial action for OU2	March 13, 1996	
Operation and maintenance (O&M) for OU1 started	April 22, 1996	
Section 107 litigation completed	October 10, 1997	
EPA signed AOC	January 23, 1998	
Preliminary close-out report	September 23, 1998	
First FYR completed	September 30, 1998	
Restrictive covenant filed with Bullitt County	March 15, 1999	
PRP completed remedial action and O&M started for OU2	March 30, 1999	
Second FYR completed	September 30, 2001	
Third FYR completed	September 20, 2006	
EPA issued an Explanation of Significant Differences (ESD)	November 3, 2009	

3.0 Background

3.1 Physical Characteristics

The Site is located in a rural part of Bullitt County, Kentucky. The Site is approximately 2.5 miles southwest of the town of Brooks, 3.5 miles northwest of the city of Shepherdsville and approximately 12 miles south of Louisville (Figure 1). The Site property is bordered on the north and west by forested hills, on the south by a residential area along Pryor Valley Road, and on the east by a residential area. The Site includes an 11-acre capped landfill (OU1) and an approximately 40-acre capped landfill (OU2). OU1 is the formerly unpermitted drum disposal area in the northern portion of the property and OU2 is the old Smith's Landfill on the southern portion of the property, which was permitted by KDEP (Figure 2). The 498-acre Bullitt County parcel ID for the property is 03500000029.

The Site and portions of the Site have changed ownership since remediation started and the site property area has variously been described as 560 acres, 500 acres, 480 acres, and 460 acres in site documents. The OU boundaries have also not been historically described in a consistent fashion.

The Unnamed Tributary, an intermittent tributary, and the Floyd's Fork stream system run from the northernmost portion of the Smith's Farm property to the southernmost edge of that property and then off site into Bluelick Creek. The Unnamed Tributary drains both major disposal areas. At the southeast edge of the landfill along the access road are several buildings, one of which houses the leachate treatment system. Along the east side of the landfill near the Unnamed Tributary, six leachate seeps have been identified. These outbreaks flow out of the earthen slope or from the bank of the Tributary. Another seep breaks out onto a low-lying area in the southwest quadrant of the landfill.

The dominant vegetation type in the area is mixed deciduous forest, which is dominated by a large diversity of broad-leaved trees. The area has sharp slopes and narrow ridges that allow for a variety of habitats and species. The Site is heavily vegetated with mixed pine and hardwood forest growth except for the landfill, which is covered with grass. The terrestrial fauna consist of small mammals, reptiles, birds and amphibians associated with second and third growth forests in the area.

Soils of the area are loamy on the slopes and ridges, and gravelly loam in the small tributary floodplains of the Site. The bedrock streambed is covered with sand, gravel and cobbles. Typically, the upper reaches of the streams have no flowing water. High water flows occur during storm events and are short in duration.

Underlying the Site is the Mississippian-age Borden formation, which includes, in descending order, the Holtzclaw Siltstone Member, the Nancy Member (silty shale), the Kenwood Siltstone Member and the New Providence Shale Member. The depth of the bedrock on site is commonly 4 to 6 feet and rock outcrops have been observed. Underlying the Borden Formation is the Devonian-age New Albany shale, which overlies

the Silurian-age Louisville Limestone. The Silurian and Devonian-age rocks crop out approximately 1 mile east of the Site. The rocks underlying the Site are nearly horizontal; the regional dip of the top of the New Albany shale is to the west at about 110 feet per mile. No major faults have been mapped by the U.S. Geological Survey in this part of Kentucky. Some joints and possibly small-scale faults are expected to be present in the rocks underlying the Site.

Previous observations suggest that the New Providence Shale and the New Albany Shale inhibit vertical percolation, providing a natural barrier to the limestone aquifer below, which serves as the principal uppermost aquifer in the area. Ground water may occur within isolated fractures, formational contacts and bedding planes in the shales resulting from vertical infiltration of water recharge, but these zones do not appear to be very interconnected. This water does not appear to be under any artesian pressure. Another hydrogeologic system in the area is the alluvial valley and surficial soil/weathered bedrock setting. Water flow discharges into the alluvial valley deposits, as evidenced by numerous flowing leachate outbreaks observed along the Unnamed Tributary streambank. Flow within the alluvial water table aquifer is controlled by topography (Figure 5). Some ground water seems to be flowing into OU2 laterally from the northwestern side of the landfill.

It seems likely that the majority of recharge water flows laterally and discharges into the major valley alluvial aquifers. The volume of water present in the shale and the rate of recharge are considerably less than the confined limestone aquifer below. The potential for vertical migration of significant quantities of leachate present within the landfill through the thick shale sequences to the limestone aquifer is not significant.

Figure 1: Site Location Map

Disclaimer: This map and any boundary lines within the map are approximate and subject to change. The map is not a survey. The map is for informational purposes only regarding EPA's response actions at the Site, and is not intended for any other purpose.

Figure 2: Detailed Site Map

Disclaimer: This map and any boundary lines within the map are approximate and subject to change. The map is not a survey. The map is for informational purposes only regarding EPA's response actions at the Site, and is not intended for any other purpose.

3.2 Land and Resource Use

The Site is surrounded by a mixture of industrial, agricultural, commercial and residential areas in a predominantly forested rural land. There is forested land north and west of the Site. Residences are located to the east and south of the Site. There are several educational and medical centers within a range of 3 miles of the Site, including a medical center 1 mile from the Site and an elementary and middle school 2 miles from the Site.

The area surrounding the Site is generally not suitable for farming or forestry, because the hills would make it difficult to perform either activity. The hills on the Smith's Farm property have steep-sloped sides and there is little flat area between slopes. The Site property was purchased by S&S Land Development Group in 2006 and has been selectively logged since the 2006 FYR with the intent of selling tracts of land for residential development. The ground water is classified as Class III by EPA's Ground Water Classification System. Water-bearing zones containing Class III ground water typically are not considered to be potential drinking water sources. Nearby residents are on municipal water.

S&S Land Development Group submitted an EPA-approved Revised Site Development Plan (Linebach Funkhouser, 2007) dated September 26, 2007 that detailed the proposed development and construction activities at the property. Prior to the initiation of site activities, S&S Land Development Group relocated the security fencing from the east side of Smith's Farm Road to the west side to allow construction traffic to access the Site without entering the restricted areas of the landfill. The first phase of development, tree harvesting, was initiated in November 2007 and was completed in November 2008. S&S Land Development Group also constructed sediment and stormwater retention basins.

3.3 History of Contamination

The Site originally consisted of an 80-acre unpermitted former drum disposal area; an approximately 40-acre formerly permitted construction debris landfill; and several smaller, isolated disposal areas where unpermitted disposal of hazardous waste occurred over at least a 30-year period. The proximity of industries in and around Louisville and the need of those industries to dispose of their wastes in a cost-effective manner resulted in the unpermitted and permitted disposal of commercial wastes in two major areas and several smaller areas at the Site. Some of the Site's ravines served as disposal "ditches" for construction debris, old household appliances, auto bodies, unsalvageable metallic industrial equipment, used tires, used drums, drummed wastes, and uncontained liquid and solid wastes. The Smith's Landfill area, which was a hilly ridge with a ravine on each side, was permitted by the Commonwealth of Kentucky to accept inert industrial wastes from November 1973 to May 1989, although the landfill area had industrial waste placed in it beginning in the 1950s. In addition, the permit was not in effect continuously and several violations occurred. The landfill was operated by the property owner, Mr. Leonard O. Smith, Sr., until his death in 1969, and by his son, Harlan Smith, until his death in 1978. The landfill was then operated by Buddy Mobley until its closure.

The permit for the landfill expired on May 10, 1989. The Commonwealth of Kentucky determined that the permit should not be renewed because: (1) a completed permit application had not been received (Kentucky Revised Statutes Section 224.855); (2) hazardous substances had been released from the permitted landfill and therefore remedial action to control the release(s) was required (Kentucky Revised Statutes 224.877); and (3) information required in order for the Commonwealth to re-evaluate the permit's renewal would be available only through a site study comparable to a Superfund Remedial Investigation (401 Kentucky Administrative Regulations 47:020 Section 5).

3.4 Initial Response

In 1983, an unpermitted drum disposal area (OU1) was discovered by KDEP. KDEP subsequently requested that EPA investigate the Site. In April 1983, the NUS Corporation, under contract to EPA, conducted a magnetometer survey of the drum disposal area. This survey provided an indication of the location and lateral extent of probable buried drums in the unpermitted portion of the Site. In April 1984, representatives of EPA's Region 4 Emergency Response and Control Section, the Environmental Response Team, the Technical Assistance Team and KDEP visited the Site and collected samples of waste from several drums in the OU1 area. From June 1984 until mid-August 1984, EPA removed approximately 6,000 surface drums. Of these 6,000 drums, 2,000 contained hazardous waste and 200 contained polychlorinated biphenyl (PCB)-contaminated waste. Also, 15,000 gallons of flammable liquids were removed. In June 1984, EPA notified the PRPs of the removal action activities being performed at the Site. The Site was proposed to the National Priorities List (NPL) in October 1984 and its listing was finalized in June 1986. In the fall of 1989, a complaint was filed against four major PRPs for recovery of EPA's removal costs.

During the 1980s, the landfill owner, Mrs. Mary Ruth Smith, contracted for the installation of a small leachate collection and recirculation system at the landfill at the insistence of the Commonwealth. Leachate lines of perforated plastic pipe were installed in ditches at the overburden/bedrock interface on the southeastern and southern sides of the landfill. The collected leachate went to a surge/collection tank and then to a large pump, from which it was pumped up to the central part of the landfill where it was sprayed onto the surface of the landfill from several vertical plastic pipes. The system was used only intermittently and then was shut down before the OU1 Remedial Investigation (RI) because of air emissions problems and complaints from residents of the mobile home community to the south of the landfill.

Also during the 1980s, in an attempt to dispose of large volumes of scrap wood, the landfill operator reportedly set piles of wood debris on fire in the northeast and northwest quadrants of the landfill. Later the operator buried the smoldering wood debris in an attempt to smother the fires. The attempt to smother the fires was not completely successful and over the next few years the operator made subsequent attempts to smother the subsurface combustion by bulldozing the areas.

3.5 Basis for Taking Action

Through initial investigations of the Site, EPA determined that the following contaminants were present in waste samples collected during exploratory trenching: benzene, toluene, ethylbenzene, xylenes, trichloroethylene, ketones, PCBs, and various volatile organic compounds (VOCs). Contaminants in leachate and leachate sediment included aluminum, arsenic, barium, cadmium, calcium, iron, lead, magnesium, manganese, sodium, zinc, VOCs and semi-volatile organic compounds (SVOCs). These contaminants posed the greatest risk to human health through dermal contact.

The 1989 OU1 Remedial Investigation/Feasibility Study (RI/FS) determined that leachate seeping from the permitted landfill contained several VOCs (i.e., chlorinated aliphatics, ketones, and monocyclic aromatics) and heavy metals. The Unnamed Tributary stream sediments were contaminated by extractable organic compounds (i.e., polycyclic aromatic hydrocarbons (PAHs)) and heavy metals, which are attributable to releases from the permitted landfill and the unpermitted drum disposal area. Soil samples collected from a location next to the landfill were also contaminated with extractable organic compounds. The primary exposures associated with OU1 were surface soils contacted by trespassers, stream sediments contacted by trespassers, and surface water contacted by trespassers.

The 1993 OU2 RI/FS determined that the primary exposures associated with OU2 were: (1) leachate and leachate sediments emanating from the landfill; (2) surface waters receiving the landfill leachate; (3) shallow ground water in the overburden; (4) dust contaminated with heavy metals from the surface of the landfill; (5) potential air emissions from subsurface thermal anomalies in the landfill; and (6) on-site physical hazards due to ready access to piles of metallic and non-metallic debris along both banks of the Unnamed Tributary. Concentrations of contaminants in the deep ground water beneath the Site were below health-based levels and, therefore, did not pose a threat. During the 1993 OU2 RI, infrared aerial photography indicated that thermal anomalies (surface soil temperatures of 75 to 80 degrees Fahrenheit on a cool morning) still existed in the northeast and northwest quadrants of the landfill.

4.0 Remedial Actions

In accordance with CERCLA and the NCP, the overriding goals for any remedial action are protection of human health and the environment and compliance with applicable or relevant and appropriate requirements (ARARs). A number of remedial alternatives were considered for the Site, and final selection was made based on an evaluation of each alternative against nine evaluation criteria that are specified in Section 300.430(e)(9)(iii) of the NCP. The nine criteria include:

- 1. Overall Protectiveness of Human Health and the Environment
- 2. Compliance with ARARs
- 3. Long-Term Effectiveness and Permanence
- 4. Reduction of Toxicity, Mobility or Volume of Contaminants through Treatment
- 5. Short-term Effectiveness
- 6. Implementability
- 7. Cost
- 8. State Acceptance
- 9. Community Acceptance

4.1 Remedy Selection

OU1

The OU1 Record of Decision (ROD) was signed on September 29, 1989, and addressed the contaminated soils, sediments, surficial aquifer and drums of the unpermitted landfill. The remedial actions in the 1989 ROD were selected to:

- Reduce risks posed by direct contact with study area soils contaminated with PCBs and lead, study area sediments contaminated with PAHs and PCBs, and inhalation of organics and PCBs from surface water within the study area.
- Collect and treat leachate to eliminate or greatly reduce the accumulation of leachate that might still be generated as a result of leaking, buried drums within Area A. (The contaminant source area was determined to be a large area of buried drums on both sides of the ridge in the southern portion of the RI Study Area).
- Contain contaminants within Area B (a smaller, additional drum burial area just north of Area A), thereby eliminating or greatly reducing infiltration of rainfall into the surface water and surficial ground water, as well as the direct contact exposure pathways.
- Design and construct the cap to minimize the amount of leachate generation, promote drainage, minimize erosion of the cover, and provide long-term minimization of migration of liquids through the underlying drums and soil.

The remedy components included in the 1989 OU1 ROD are:

• Excavate approximately 26,200 cubic yards of contaminated soil, surface drums, buried drums and fill material from Area B.

- Excavate approximately 5,200 cubic yards of contaminated on-site sediments from the intermittent valley streams within the study area of the Site.
- Treat the contaminated sediments and material from Areas A and B using a thermal destruction unit.
- Solidification/fixation of approximately 50 percent of the treated material and return material and treated soils into Area A and B for placement.
- Consolidate and cap wastes within Area A in accordance with federal and state requirements (including incineration of a to-be-determined volume of material in Area A). Investigate Area A to define the volume and nature of contaminants within that area before capping.

Health-based remediation levels for soils in the ROD were: lead (500 ppm); total PAHs (5 ppm); and total PCBs (2 ppm).

During the course of the remedial design, data generated from additional sampling and analysis and from treatability studies indicated a need for an amendment to the original ROD. The amended ROD was issued by EPA on September 29, 1991. Its main components are:

- Excavate approximately 16,000 cubic yards of contaminated soils in Area B to the underlying rock or to a shallower depth at which contamination is below action levels.
- Consolidate and treat contaminated soils, sediments and debris from the west and southeast sides of Area A.
- Decontaminate utilizing best management practices and overpack unearthed drums, metal objects and similar debris excavated from Area B.
- Place overpacks in a shallow grave in Area A prior to capping.
- Treat on-site selected Area B soils by a chemical process to decontaminate or immobilize remaining contaminants of concern (COCs) that are above the action levels.
- Place all treated material from Area B in Area A under the cap.
- Build reinforced concrete retaining walls along most of the west side of Area A.
- Build double-reinforced concrete retaining walls along a section of the northeast side of Area A.
- Build other engineered retaining structures along the perimeter of Area A, where appropriate.
- Integrate a leachate collection system with the perimeter retaining structures and collect leachate in storage tank(s) of appropriate size.
- Treat and properly dispose of leachate on site or off site.
- Design surface run-on/run-off control systems for a 50-year/24-hour rain event.
- Cap Area A utilizing a Resource Conservation and Recovery Act (RCRA) cap, which may include a bentonite matting component and a synthetic geomembrane (high density polyethylene (HDPE) or equivalent) of at least 30 mm thickness.

OU2

The OU2 ROD was signed on September 17,1993, and addressed landfill wastes, leachate, leachate sediment, surface soil, ground water and surface water contamination in an approximately 40-acre permitted landfill and other outlying areas on site.

The purpose of the OU2 remedy was to reduce the risk associated with exposure to the contaminated on-site surface soils; contaminated on-site surface and ground waters; contaminated on-site stream sediments; and contaminated, on-site leachate and leachate sediments. The major components of the selected remedy included:

- Remediate subsurface thermal anomalies by excavation.
- Consolidate peripheral waste areas within the landfill.
- Install an extensive leachate collection system to intercept and collect leachate and contaminated ground water.
- Re-contour the surface of the landfill.
- Install a RCRA-type cap with run-on and run-off control systems and a gas control system.
- Install a multi-stage leachate treatment system for on-site discharge to the intermittent Unnamed Tributary east of the landfill.
- Install a perimeter fence and warning signs.
- Monitor the OU2 wells semi-annually for five years after construction is complete and thereafter annually for 25 years.
- Impose surface water and ground water use restrictions as well as deed restrictions to limit land use.

Health-based remediation levels for soils in the OU2 ROD were: bis (2-ethylhexyl) phthalate (0.9 ppm); heptachlor epoxide (0.006 ppm); 4,4'-DDE (1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene) (0.023 ppm); 4,4'-DDD (1,1-dichloro-2,2-bis(p-chlorophenyl)ethane) (0.058 ppm); 4,4'-DDT (1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane) (0.047 ppm); alpha-chlordane (0.04 ppm); and gamma-chlordane (0.04 ppm). However, for the purposes of actual consolidation of soils, a subtotaling-of-concentrations scheme was devised to facilitate the consolidation of hundreds of thousands of cubic yards of soils associated with the OU2 area.

Table 2 lists health-based remediation levels for the treatment of leachate and surface water identified in the OU2 ROD.

Table 2: OU2 Leachate/Surface Water Remediation Levels

COC	Remediation Levels (micrograms per liter (µg/L))
2,4-Dimethylphenol	4,570
2-Chlorophenol	23

COC	Remediation Levels (micrograms per liter (µg/L))
Antimony	62
Arsenic	11
Barium	231
Chromium	11
Methylene chloride (Dichloromethane)	5,870
Nitrobenzene	250
N-Nitrosodi-n-propylamine	11
Phenol	365,000
Thallium	11

EPA signed an Explanation of Significant Differences (ESD) on November 3, 2009 that modified the existing institutional controls component of the remedy to allow residential development on the portion of the property that is outside of the secured OU1 and OU2 landfill cells. The approximately 80-acre "controlled" area that is fenced, plus an 80-foot buffer along the perimeter of the fence line, would not be developed. This 80-foot protective buffer exists along the entire perimeter of the existing fence line, except for a small section near the southern entrance to the Site. The buffer requirements were eased for this small section to allow room for a road to gain access to the southwestern corner of the Site (see Appendix F for a map of the modified area affected by the ESD). The surface water and ground water restrictions established by the March 1999 restrictive covenant remain in effect, and are not modified by the 2009 ESD. Although allowed by the 2009 ESD, the restrictive covenant has not yet been updated with the new boundaries at the Bullitt County Clerk of Courts.

4.2 Remedy Implementation

The remedial design for OU2 was started by Law Engineering, now MACTEC, in June 1994. The plans called for sediment removal, placement, and consolidation; construction of the landfill cover system, run-on and run-off controls, gas control system, perimeter fence and warning signs; and Gabion wall improvements to the Unnamed Tributary, leachate collection and ground water interceptor system, and leachate treatment plant. Construction was completed in September 1998.

OU1

EPA issued a CERCLA Section 106 Unilateral Administrative Order (UAO) to more than 30 PRPs on March 14, 1990, to perform the OU1 remedial design/remedial action activities. The remedial design began on May 4, 1990. The OU1 remedial action began in May 1993; construction activities were completed in January 1996.

Surface and subsurface soil and sediment hot spots contaminated with PCBs and PAHs were confirmed by additional sampling and analysis, excavated, screened and stockpiled.

Base-catalyzed thermal desorption process equipment was mobilized to a custom-built 3-acre concrete pad immediately southeast of the main OU1 area, and stockpiled contaminated soils were treated in the modified rotary kiln incinerator. Approximately 20,500 cubic yards of soils and sediments were treated. Treated soils and sediments with lead concentrations over the 500 ppm action level were not found, so no solidification of soils was necessary.

At the main OU1 area, an 11-acre landfill was constructed. On the west toe of the hill in the main OU1 area, a 1,000-foot long reinforced concrete retaining wall was built. On the northeast corner of the hill, another reinforced concrete retaining wall was built. Main leachate collection and conveyance lines were installed along the entire north-south edges of the east and west sides of the new landfill inside the retaining walls. The gravity-fed leachate collection lines were connected to two double-wall fiberglass reinforced plastic underground storage tanks.

After backfilling the new landfill with treated soils and contouring with compacted clean fill, the 11-acre landfill was capped with geocomposite bentonite matting, a HDPE liner, and a geotextile drainage/filter net. A layer of top soil was applied and hydroseeded. Runon and run-off ditches and swales were constructed. Gabions were installed at critical stretches along the Unnamed Tributary and its tributaries to guard against stream bank collapse and to manage erosion.

Leachate is collected at OU1 in two 10,000-gallon double-walled fiberglass underground storage tanks located at the southeast corner of the cap. The north tank contains leachate collected from the east side of the landfill and the south tank contains leachate collected from the west side of the landfill. The level of leachate in each tank is monitored by a float system. When the tank reaches 50 percent of its capacity, an amber indicator light on the control panel illuminates. When this tank reaches 85 percent of its capacity, an electronically actuated valve shuts off flow into the tank from the collection system. A force main was installed in 2000 to automatically transfer leachate from OU1 to OU2's lift station for subsequent treatment at the OU2 treatment plant.

The entire OU1 capped area was fenced and signed. A restrictive covenant restricting land, ground water and surface water use was filed in March 1999 with Bullitt County. Details of OU1 can be found in Figure 3.

Figure 3: OU1 Detailed Map

OU₂

In April 1994, after unsuccessful negotiations, a UAO for the OU2 remedial design/remedial action was issued to 10 PRPs. The remedial design began in June 1994. The remedial action construction began in March 1996, and was complete in September 1998. The remedial action resulted in the consolidation and capping of the approximately 40-acre, formerly permitted landfill, and the construction of a leachate treatment plant with a National Pollutant Discharge Elimination System (NPDES)-type discharge to an on-site intermittent stream. Operation and maintenance (O&M) activities began during the late summer of 1998.

The landfill's thermal anomalies were investigated and better delineated, but were not excavated, sprayed with water or fire retardant chemical foam, or subjected to application of other nonhazardous extinguishing substances because it was not necessary. Subsurface probes indicated that the thermal intensity at depth had decreased to the point that no response actions were necessary.

The consolidation and recontouring of the landfill was designed and constructed to enhance the run-on and run-off of rainfall so that there would be no collection or ponding of surface water on the cap and so that efficient management of drainage was maintained. Small piles of metallic waste and old tires along the banks of the Unnamed Tributary were disposed of in the landfill during consolidation. Fill soils were collected from uncontaminated Smith's Farm property soils on the surrounding hillsides. Borrow areas were recontoured and seeded.

The cap and cover system was designed and built to satisfy RCRA-type cap and cover requirements. A geocomposite bentonite matting was placed on the contoured and compacted earthen underlayment. A low density polyethylene (LDPE) plastic liner was installed over the bentonite geocomposite. Geotextile drainage netting was placed over the LDPE liner. Two feet of top soil was placed on top of the drainage geotextile and the top soil was seeded.

Because the former landfill comprises more than 35 acres of sloped terrain, it was important for the long-term reliability of the cap that rain water be systematically diverted onto and off of the cap without damaging the cap and cover system. Sod- and riprap-lined drainage ditches and swales were designed and built.

A subsurface leachate collection system extends down the east and southeast edges of the landfill. Collected leachate is subjected to physical, chemical, and biological treatment, and on-site discharge to the Unnamed Tributary. The discharge meets the substantive requirements of a Kentucky Pollutant Discharge Elimination System (KPDES) discharge. KDEP has been consulted and kept informed on NPDES issues. The leachate treatment plant began full operation on August 14, 1998. Perimeter fencing, lockable gates, warning signs and other security measures were installed.

The ground water monitoring system entails sampling and full-scan analysis of OU2 ground water monitoring wells and certain surface waters semi-annually for the first five years after landfill closure, and then annually for the next 25 years. The frequency and character of sampling and analysis of the leachate treatment plant effluent was determined during the remedial action construction phase. The leachate plant effluent was monitored monthly for the first six months of operation, bimonthly for months seven through 18, and quarterly after the first 18 months. Reporting was scheduled for quarterly for the first 18 months, semi-annually until year five (after the first 18 months), and annually after year five.

As a result of severe rain storms in 1999, a number of erosion repairs were necessary on the OU1 and OU2 caps. The more urgent of the repairs were completed in June of that year. Repairs included replacing soil and reseeding in numerous areas on both caps; replacing soil and gravel within the roadway to the OU2 cap; removing soil, gravel and riprap from the roadway ditches and cleaning out the culverts. Primary modifications to the landfill cover system relate to the surface water drainage system.

In 2000, the construction of drainage improvements on the landfill cap and adjacent areas of OU2 was completed. The work included:

- Installation of textured HDPE geomembrane for lining of downdrains to toe of landfill slope.
- Construction of a concrete-filled cellular confinement system for lining of the lower section of downdrains 3 and 4.
- Improvements to designated portions of the upper section of the main drainage way (MDW), including removal of existing riprap and debris, placement of fill in erosion gullies, re-grading of the MDW, and installation of turf reinforcement.
- Placement of select soil fill and installation of turf reinforcement matting to repair
 erosion gullies on the surface of the landfill cap and terraces, including terrace
 entrances to downdrains and ditches.
- Re-grading of MDW at the access road crossing and construction of a concretefilled cellular confinement system.
- Repair of the landfill cap access road from paved road to top of southwest slope, including placement of specified dense graded aggregate mix for filling of erosion gullies and resurfacing of the road, re-grading of the road surface (including crowning of road), placement of select soil fill and re-grading of areas adjacent to the road, and application of asphalt prime and seal coats.
- Reconstruction of the southeastern runoff ditch.
- Reconstruction of drainage ditches in the upper northeast section of the landfill cap.
- Reconstruction of the lower northeast perimeter drainage ditch.
- Reconstruction of a defined section of the existing Gabion wall on the west bank
 of the creek and placement of concrete grout in eroded areas beneath the Gabion
 wall.

Details of OU2 can be found in Figure 4.

Figure 4: OU2 Detailed Map

While the remediation at OU1 and OU2 was ongoing under the two aforementioned UAOs, attorneys from the U.S. Department of Justice in Washington, D.C., and from EPA's Region 4 office worked with representatives from the major PRPs to settle lawsuits that involved the payment of past, present and future response costs. These negotiations resulted in a Consent Decree for cost-share allocation in October 1997 and an Administrative Order on Consent (AOC) for 24 de minimis parties in January 1998. According to the Consent Decree, the maintenance for both OUs will be managed by the Ford Motor Company using money paid into a special fund by the PRPs. Land use restrictions were recorded with Bullitt County and are overseen by the State and EPA. The restrictive covenant filed in March 1999 imposes water use restrictions for ground water and surface water in the immediate area of the landfill. These waters are not to be used for potable water sources as a precaution against future releases of contaminants. The restrictive covenant states that the property may not be utilized for residential or commercial development, exploration, investigation or any activity that will result in disturbance of the land surface without written consent from EPA.

On May 28, 2008, drums were observed at a location outside of the capped landfill area at OU1. It was initially thought to be six to 13 drums, but when the drum characterization and removal was completed in September 2009, a total of 319 drums, scraps and carcasses were removed. Drums were excavated and transported under manifest to an approved waste disposal facility. Due to the condition of the bridge exiting the Site and its inability to accommodate heavy trucks, the non-hazardous soils associated with the buried drums were not removed. The bridge was upgraded in April 2010.

4.3 Operation and Maintenance (O&M)

The O&M period for the Site effectively began with the completion of the remedial actions that were completed in September 1998. On January 17, 1996, the final OU1 O&M Plan was submitted to EPA. On March 15, 1999 the final OU2 O&M Plan was submitted to EPA Region 4. Each plan outlined the ongoing O&M requirements for the 30-year post-closure period. The O&M activities for the Site include quarterly and annual site inspections, leachate management and treatment, storm event inspections, routine maintenance and repairs, and semi-annual and annual sampling and analysis of ground water. Routine O&M of the Site is being conducted in accordance with the O&M Plan.

OU1 and OU2 cap system maintenance has generally been limited to routine mowing, periodic weed control and woody vegetation removal, fence repair, rodent control and occasional repair of stressed or eroded areas. The 2010 O&M report indicated that the access road has minimal areas of cracking, but the fence was relocated by the current property owner and the majority of the access road is now outside the fenced area controlled by the O&M contractors.

The 2010 O&M report noted the presence of an oily substance in the lift station on three occasions in 2010 after a heavy (4 inches or more) rainfall event at the Site. The three times that oil was observed were January 21, May 3, and December 6, 2010.

The treatment plant stopped functioning on January 21, 2010 due to a power outage, and an oily substance was observed in the lift station at that time. Samples were collected from the lift station and Extraction Wells #1, #2, and #4 to help determine a source. The samples were sent to Lancaster Laboratories and analyzed for oil and grease, total organic carbon, VOCs, SVOCs, PCBs, and metals. Review of the results indicates that the lift station sample contains lower constituent concentrations than the extraction well samples, with the exception of phthalates, naphthalene/2-methylnaphthalene, and oil and grease.

The concentrations of phthalates and oil and grease in the lift station sample were orders of magnitude greater than those concentrations in the extraction well samples. In addition, the samples collected from the lift station and extraction wells did not look or smell alike; therefore, it was concluded that the oily substance does not appear to have come from the extraction wells. The specific source is unknown. However, it was determined that the oil-like substance did not come from the extraction well pumps and the treatment plant equipment.

During subsequent occasions, cleanup of the oil from the surface of the lift station sump with sorbent socks was initiated and continued until no visible oil was seen. MACTEC has plans to put equipment in place to remediate future influxes of the oily substance. Determination of the source is ongoing.

Due to trespassing and vandalism issues, a security camera system was installed by MACTEC in 2006; it records activities at the Site 24 hours a day, contains motion sensors, and includes automatic call features in case of an alarm trip. The security system is inspected as needed to verify that it is working properly.

The PRPs have contracted with MACTEC to perform overall project management and perform environmental operations and maintenance management activities for the entire site. MACTEC has been the sole O&M contractor for this site to date. The 1994 FS projected O&M costs through 2029 were estimated at \$425,000 per year.

Table 3: Annual O&M Costs

Year	Total Cost (rounded to the nearest \$1,000)			
2006	\$359,000			
2007	\$360,000			
2008	\$300,000			
2009	\$484,000			
2010	\$441,000			

5.0 Progress Since the Last Five-Year Review

The protectiveness statement from the 2006 FYR for the Site stated the following:

Based on this Five-Year Review and the above summary, the following conclusion is drawn:

"The remedy at the Site currently protects human health and the environment because the landfill cap is intact, the leachate treatment system is effective and all residents in the vicinity obtain water from the city, thus eliminating the exposure pathways relative to surface soils, surface water and leachate water. However, in order for the remedy to be protective in the long-term, groundwater monitoring data must be reported and evaluated to ensure that the remedy prevents migration of hazardous substances offsite within groundwater."

The 2006 FYR included seven issues and recommendations. Each recommendation and its current status is discussed below.

Table 4: Progress on Recommendations from the 2006 FYR

Section	Recommendations	Party Responsible	Milestone Date	Action Taken and Outcome	Date of Action
5.1	Repair eroded areas of cap.	PRP	Quarterly Reports	Cover areas that experienced erosion are repaired as needed.	03/28/2008
5.2	Repair areas of stressed vegetation.	PRP	Quarterly Reports	Areas of missing or distressed vegetative cover are repaired when discovered.	03/28/2008
5.3	Plot contaminant concentrations on site map as part of the annual report in order to monitor concentrations within the landfill and determine if the leachate capture system is successfully preventing migration off site.	PRP	2006 Annual Report	Annual reports include sampling results on site maps.	03/28/2008
5.4	Conduct evaluation to determine whether gaseous emissions should be monitored to ensure the effectiveness of the existing vent system.	PRP	2007 Annual Report	Methane, carbon dioxide and oxygen emissions from each landfill gas vent in OU1 and OU2 were analyzed.	01/14/2008
5.5	Consider implementing more progressive trespassing and vandalism control measures.	PRP	On-going	A security camera system was installed.	2006

Section	Recommendations	Party Responsible	Milestone Date	Action Taken and Outcome	Date of Action
5.6	An evaluation of detection limits and reporting limits as compared to permit limits should be included in the parameters reported.	PRP	2006 Annual Report	Annual reports include detection limits, reporting limits, and maximum contaminant levels (MCLs) in parameters reported.	03/28/2008
5.7	Annual reports should plot the influent and effluent concentrations versus time to show annual variability and overall site progress.	PRP	2006 Annual Report	Annual reports include graphs of influent concentrations versus time.	03/28/2008

5.1 Eroded Areas of Cap

Cover areas that experienced erosion are repaired as needed.

5.2 Stressed Vegetation

Areas of missing or distressed vegetative cover are repaired when discovered.

5.3 Plot Contaminant Concentrations on Site Map

Annual reports include contaminant concentration sampling results and ground water flow on site maps.

5.4 Gaseous Emissions

MACTEC developed the Gas Monitoring Field Operations Manual (dated November 16, 2007) and used a GEM 2000 Gas Analyzer to measure methane, carbon dioxide and oxygen emissions from each landfill gas vent in OU1 and OU2. The analyzer was also used to measure the concentration of these three gas emissions from the two deep well vents in OU1 and select side-gradient and down-gradient monitoring wells, or both. The emissions were monitored once.

5.5 Trespassing and Vandalism Control Measures

Due to trespassing and vandalism issues, a security camera system was installed by MACTEC in 2006; it records activities at the Site 24 hours a day, contains motion sensors, and includes automatic call features in case of an alarm trip. The security system is inspected as needed to verify that the system is working properly.

5.6 Include a Comparison of Detection Limits and Reporting Limits to Permit Limits

Annual reports include detection limits, reporting limits and MCLs in parameters reported.

5.7 Plot Influent and Effluent Concentrations Versus Time

Annual reports include graphs of influent concentrations versus time. Effluent concentrations are not graphed versus time, but according to the 2010 O&M Report, of the 173 constituents analyzed, since 1999 there have been only five exceedances of the ROD and KPDES effluent requirements (see Section 6.5).

6.0 Five-Year Review Process

6.1 Administrative Components

EPA Region 4 initiated the FYR in January 2011 and scheduled its completion for September 2011. The EPA site review team was led by EPA Remedial Project Manager (RPM) Cathy Amoroso and also included EPA Community Involvement Coordinator (CIC) Tonya Whitsett and contractor support provided to EPA by Skeo Solutions. In January 2011, EPA held a scoping call with the review team to discuss the Site and items of interest as they related to the protectiveness of the remedy currently in place. A review schedule was established that consisted of the following activities:

- Community notification.
- Document review.
- Data collection and review.
- Site inspection.
- Local interviews.
- FYR Report development and review.

6.2 Community Involvement

In March 2011, a public notice was published in the *Pioneer News* newspaper announcing the commencement of the FYR process for the Site, providing contact information for Cathy Amoroso, RPM, and Tonya Whitsett, CIC, and inviting community participation. The press notice is available in Appendix B. No one contacted EPA as a result of this advertisement.

The FYR Report will be made available to the public once it has been finalized. Copies of this document will be placed in the designated site repository: Ridgeway Memorial Library, located at 2nd and Walnut Street, Shepherdsville, Kentucky. Upon completion of the FYR, a public notice will be placed in the *Pioneer News* newspaper to announce the availability of the final FYR Report in the Site's document repository.

6.3 Document Review

This FYR included a review of relevant, site-related documents including the ROD, remedial action reports, and recent monitoring data. A complete list of the documents reviewed can be found in Appendix A.

ARARs Review

CERCLA Section 121(d)(1) requires that Superfund remedial actions attain "a degree of cleanup of hazardous substance, pollutants, and contaminants released into the environment and of control of further release at a minimum which assures protection of human health and the environment." "The remedial action must achieve a level of cleanup that at least attains those requirements that are legally applicable or relevant and

appropriate. Applicable requirements are those cleanup standards, standards of control, and other substantive requirements, criteria, or limitations promulgated under federal environmental or state environmental or facility citing laws that specifically address a hazardous substance, remedial action, location, or other circumstance found at a CERCLA site. Relevant and appropriate requirements are those standards that, while not "applicable," address problems or situations sufficiently similar to those encountered at the CERCLA site that their use is well suited to the particular site. Only those state standards that are more stringent than federal requirements may be applicable or relevant and appropriate. To-be-considered (TBC) criteria are non-promulgated advisories and guidance that are not legally binding, but should be considered in determining the necessary remedial action. For example, TBC criteria may be particularly useful in determining health-based levels where no ARARs exist or in developing the appropriate method for conducting a remedial action.

Chemical-specific ARARs are health- or risk-based numerical values or methodologies which, when applied to site-specific conditions, result in the establishment of numerical values. These values establish an acceptable amount or concentration of a chemical that may remain in, or be discharged to, the ambient environment. Examples of chemical-specific ARARs include MCLs under the Federal Safe Drinking Water Act (SDWA) and ambient water quality criteria enumerated under the Federal Clean Water Act.

Action-specific ARARs are technology- or activity-based requirements or limits on actions taken with respect to a particular hazardous substance. These requirements are triggered by a particular remedial activity, such as discharge of contaminated ground water or in-situ remediation.

Location-specific ARARs are restrictions on hazardous substances or the conduct of the response activities solely based on their location in a special geographic area. Examples include restrictions on activities in wetlands, sensitive habitats and historic places.

Remedial actions are required to comply with the chemical-specific ARARs identified in the ROD. In performing the FYR for compliance with ARARs, only those ARARs that address the protectiveness of the remedy are reviewed.

Ground Water ARARs

The ROD did not identify chemical-specific ARARs for ground water at the Site and no actual ground water protection standards were called out specifically as remediation goals. SDWA MCLs were not identified as ARARs at this site, but rather are TBC criteria. The ROD stated the MCLs were not ARARs because the small ground water systems near the landfill being used as sources of drinking water had not received, and were not expected to receive, contamination from the Site. The ground water near the site is classified as Class III by EPA's Ground Water Classification System and water-bearing zones containing Class III ground water typically are not considered potential drinking water sources. Ground water monitoring is required at the Site and, according to the ROD, must comply with Sections 10 and 11 of 401 KAR 34:060, which states that

"[s]hould the ground water monitoring at the Site indicate that the MCLs/MCLGs [maximum contaminant levels/maximum contaminant level goals] are consistently exceeded, then an appropriate corrective action will be applied to comply with the MCLs and MCLGs."

Surface Water ARARs

The ROD identified KPDES 401 KAR 5:005 as an ARAR for surface water. A letter from the State on July 10, 1997 indicated that KPDES permit requirements were waived, contingent on site effluent meeting the criteria in the letter's attachment. In addition to the risk-based standards for 11 constituents identified in the ROD, the 1997 letter specified effluent standards for an additional 26 contaminants that must be met at the Site (Table 5). The ROD also identified the Kentucky's Surface Water Quality Standards as a surface water ARAR, but it did not provide specific standards for COCs.

Table 5: Surface Water Discharge Requirements

COC	1993 Effluent Standards	1997 Effluent Standards
1,1,2-Trichloroethane	1999	5 μg/L
1,1-Dichloroethane	(EEE	5 μg/L
1,1-Dichloroethene	1(5 μg/L
1,2-Dichlorobenzene	80000	5 μg/L
1,2-Dichloroethane	N ese	5 μg/L
1,2-Dichloropropane	n 	5 μg/L
1,4-Dichlorobenzene	100	5 μg/L
2,4-Dimethylphenol	4,570 μg/L	5 μg/L
2-Chlorophenol	23 μg/L	
Antimony	0.062 mg/L	1.6 mg/L
Arsenic	0.011 mg/L	0.05 mg/L
Barium	0.231 mg/L	<u> </u>
Benzene	N 	5
Beryllium	1	0.0053 mg/L
Butyl benzyl phthalate	NATE:	5 μg/L
Cadmium	8	0.0011 mg/L
Chromium	0.011 mg/L	0.011 mg/L
Copper	1 	0.012 mg/L
Cyanide	8	0.005 mg/L
Ethylbenzene	100	5 μg/L
Iron	n 	1 mg/L
Lead	ā 	0.0032~mg/L
Mercury	9 .555	12 ng/L
Methylene chloride (Dichloromethane)	5,870 μg/L	5 μg/L

39

COC	1993 Effluent Standards	1997 Effluent Standards	
Nickel		0.16 mg/L	
Nitrobenzene	250 μg/L		
N-Nitrosodi-n-propylamine	11 μg/L	₽ 7 .57 g	
Phenol	365,000 μg/L	5 μg/L	
Selenium		0.005 mg/L	
Silver		0.00012 mg/L	
Tetrachloroethene		5 μg/L	
Thallium	0.011 mg/L	0.04 mg/L	
Toluene		5 μg/L	
Trichloroethene (TCE)		5 μg/L	
Zinc		0.11 mg/L	
mg/L=milligrams per liter μg/L= micrograms per liter ng/L=nanograms per liter	-		

Soil ARARs

The ROD did not specify chemical-specific ARARs for soil. Cleanup goals for soil COCs were based on a site-specific risk assessment.

6.4 Data Review

Ground Water

As part of the Annual Inspections, sampling and analysis of monitoring wells for OU1 and OU2 was performed in November 2006, November 2007, November 2008, May 2009 and May 2010. Sampling included monitoring wells MW-3 through MW-8 and MW-11 through MW-15 of OU1; BG-1 of OU1 and OU2; and OU2 monitoring wells MW-18, MW-19, MW-22A, MW-22B, MW-24A, MW-24B, and MW-25 through MW-30. Samples were analyzed for VOCs, SVOCs and metals. The 2010 Annual Reports included trend graphs for the monitoring well data reported from 2000 to 2010 using the following rationale:

- VOCs were graphed for the wells in which VOCs have been historically detected: MW-11, MW-12, MW-15 and MW-30.
- SVOCs were graphed (if detected) for MW-11, MW-15 and MW-30. In addition, SVOCs present in MW-4 and MW-25 were graphed due to the historical exceedances of the MCLs.
- Metals that exceeded the MCL were graphed specific to the location in which the exceedence occurred.

All trend graphs are included in Appendix G. The 2010 Annual Report noted that a plume map could not be constructed due to the lack of data surrounding the wells where significant detections of VOCs were observed.

VOCs

VOCs have been historically detected in two OU1 monitoring wells (MW-11 and MW-15) and one OU2 monitoring well (MW-30). MW-11 and MW-15 are located on the eastern side of OU1 (Figure 5). Since 2001, concentrations of total 1,2-dichloroethene (1,2-DCE) and TCE in MW-11 have been above their corresponding MCLs. No other VOCs were detected above the MCL in MW-11 during the past five years. Concentrations of 1,2-DCE and TCE in MW-11 increased from January 2001 (approximately 600 and 1,000 μ g/L, respectively) to November 2006 (1,300 and 1,900 μ g/L, respectively). Concentrations then declined sharply from November 2006 to May 2009, but have increased since May 2009 to current, 2010 levels (700 and 540 μ g/L, respectively). Current levels remain above the corresponding MCLs. There are insufficient downgradient monitoring wells to indicate if and where a plume has migrated near MW-11. The vertical and horizontal extent of contamination in MW-11 has not been defined. The source of contamination found in MW-11 has not been identified.

Since 2004, concentrations of vinyl chloride in MW-15 have been above the MCL. The 2010 concentrations are the highest ever detected in MW-15. Historically, vinyl chloride had been below the MCL, but concentrations have increased, most notably from 2009 to 2010. Concentrations of 1,2-DCE in MW-15 have also increased from the lowest detection in 2003 to the highest in fall 2008. Concentrations since fall 2004 have fluctuated above and below the MCL of 70 μ g/L, most recently with a small decline from 79 μ g/L in November 2009 to 67 μ g/L in May 2010. No other VOCs were detected above the MCL in MW-15 during the past five years. There are insufficient downgradient monitoring wells to indicate if and where a plume has migrated near MW-15.

In December 2008, low levels (below the Contract Required Detection Limit (CRDL)) of VOCs (1,2-DCE and TCE) were reported in samples collected from MW-12 and MW-14, also located on the eastern side of OU1, and in monitoring well MW-3, located on the western side of OU1. VOCs were not detected in MW-3 or MW-14 in the May 2009 or 2010 sampling events. However, 1,2-DCE and TCE were again detected in MW-12 in 2009 and 2010. Concentrations of 1,2-DCE and TCE in MW-12 have increased in each sampling event since November 2007, from non-detect in 2007 to 18 and 14 μ g/L, respectively, in May 2010. The 1,2-DCE concentrations are still well below the MCL, but the TCE concentrations exceed the MCL of 5 μ g/L. VOCs had not been detected in MW-12 prior to 2008.

At OU2, VOCs have been detected at low levels (below $10 \mu g/L$) in samples from downgradient well MW-30 and have sporadically increased from 2001 through 2005. In 2005, 2007, 2008, 2009 and 2010, 1,1,2-TCA exceeded its corresponding MCL of 5 $\mu g/L$. Three VOCs were detected in MW-30 in 2007, but six VOCs were detected in this well in 2008 and 2009; concentrations increased during this time. The following VOCs

were detected again in the May 2010 event, but at lower concentrations than 2009: 1,1,2-TCA at 12 μ g/L, 1,1-dichloroethane estimated at 3 μ g/L, 1,2-dichloroethane estimated at 5 μ g/L, 1,2-DCE estimated at 1 μ g/L, and acetone and benzene were undetected at the reporting limits.

Figure 5: May 2009 and May 2010 Ground Water Organic Compound Sampling Results

SVOCs

Bis(2-ethylhexyl)phthalate is the SVOC that is most commonly detected at elevated levels at the Site. It was detected above the MCL (6 μ g/L) in five samples in the past five years: MW-7 (7 JQ¹ μ g/L) and BG-1 (25 μ g/L) in 2009 and MW-4 (200 μ g/L), MW-12 (11 μ g/L), and MW-13 (13 μ g/L) in the 2010 sampling event. Bis(2-ethylhexyl)phthalate was also detected in MW-7, MW-30 and BG-1 in 2009, but was not detected in these wells in 2010. The concentration of bis(2-ethylhexyl)phthalate in MW-4 in 2010 was significantly greater than the MCL of 6 μ g/L. There had been no detections of this COC in MW-4 prior to this date. Analysis of future sampling in MW-4 is needed to determine if this result is an anomaly.

Three SVOCs, bis(2-ethylhexyl)phthalate, 4-chloro-3-methylphenol and 2,4-dichlorophenol, were detected in 2010. No MCLs exist for 4-chloro-3-methylphenol or 2,4-dichlorophenol. Concentrations of diethyl phthalate and naphthalene in OU2 monitoring well MW-25 have declined since elevated detections in 2004 and have been non-detect in the past three sampling events.

Pesticides and PCBs

In the 2010 sampling event, two pesticides were detected in three wells at concentrations below the CRDL but above the method detection limit. Heptachlor was present in MW-8 (0.015 JQ $\mu g/L$) and beta-benzenehexachloride was present in MW-14 (0.039 JQ $\mu g/L$) and BG-1 (0.01 JQ $\mu g/L$). Pesticides have been sporadically detected throughout the years at low concentrations (below the CRDL) with no noticeable trends. PCBs were not detected in any of the samples collected in the May 2010 sampling event.

Metals

Metal concentrations have been sporadic with notable increases and decreases in concentrations from 2000 through 2006. In December 2007, low-flow sampling techniques were employed to aid in the reduction of suspended particulates and the production of more representative metal data. There were slight increases in metal concentrations in several wells during the last sampling event, but with the exception of those discussed below, the concentrations remained below MCLs.

Since 2000, six metals have been detected above MCLs in ground water samples. The six metals that exceeded a MCL on at least one occasion are: antimony, arsenic, cadmium, chromium, lead and thallium. In May 2010, the concentrations of total arsenic, cadmium, chromium and thallium were greater than their respective MCLs in MW-3, MW-6, MW-8, MW-15, MW-26 and MW-28.

¹ Estimated; value detected between the reporting limit and the method detection limit.

Chromium concentrations in MW-3 were below the 100 μ g/L MCL since 2000, but spiked to 2,160 μ g/L during the May 2009 sampling event. During the May 2010 sampling event, chromium concentrations were detected above the MCL at 141 μ g/L.

Concentrations of several metals have declined in MW-6 and MW-8 since high levels were detected during 2004 and 2005, but several metals were still near or above the MCLs in these wells during the past five years. During the most recent sampling event, only thallium was above the 2 μ g/L MCL in MW-6 (estimated at 4.1 μ g/L). Arsenic (MCL of 10 μ g/L) and thallium concentrations in MW-8 increased to levels above the MCL, 13.9 μ g/L and estimated 4.1 μ g/L respectively, during the 2010 sampling event. Thallium concentrations also increased to levels above the MCL in MW-15 (estimated at 2.6 μ g/L) and MW-26 (estimated at 5.3 μ g/L).

Cadmium concentrations in OU2 monitoring well MW-28 have fluctuated since 2000, including detections above the MCL in three of the past five sampling events. There is an overall downward trend for cadmium in this well and it was detected at 5.5 μ g/L in May 2010. No other metals were detected above the MCL of 5 μ g/L during the past 10 years.

Effluent Data

Quarterly sampling of the leachate treatment plant effluent was performed to meet the substantive requirements for discharge under the KPDES program. Although a permit for discharge is not required for a Superfund site, the substantive requirements under the KPDES program must be met.

According to the 2010 O&M Report, of the 173 constituents analyzed, since 1999 there have been only five exceedances of the ROD and KPDES effluent requirements. Ethylbenzene was detected at 14 μg/L (over the ROD/KPDES requirement of 5 μg/L) in September 2005 and selenium was detected at 0.01, 0.17, 0.0061 mg/L (over the ROD/KPDES requirement of 0.005 mg/L) in June and September 2005, and June 2008. Ethylbenzene has not been detected since the 2005 occurrence and selenium was not detected in any subsequent events. In the 2010 fourth quarter sample, mercury was detected at 13.1 ng/L, above the KPDES requirement of 12 ng/L. The sample was recollected in January 2011 and the mercury concentration (8.54 ng/L) was below the KPDES requirement. A summary of recent treatment plant effluent sampling results is presented in Appendix H.

6.5 Site Inspection

The site inspection was performed on March 16, 2011 by the following participants: Cathy Amoroso and Tonya Whitsett of EPA Region 4, Susan Mallette and Brent Cary of KDEP, Jeff Engels and Eddie Taylor of MACTEC, Darryl Shaw of S&S Land Development Group, Chris Fields of Linebach Funkhouser and Johnny Zimmerman-Ward and Rhode Bicknell of Skeo Solutions. During the site inspection, the following features were inspected or observed: the OU1 and OU2 landfill caps and surface drainage system, the leachate collection and transportation system, the leachate treatment plant, the

treated leachate discharge system and general site conditions. In general, the leachate collection, transportation, treatment and discharge systems were found to be operating and functioning properly. The completed site inspection checklist can be found in Appendix D and site photographs are available in Appendix E.

The property owner took site inspection participants to view the retention ponds that were required to be installed as part of the logging operations. The retention ponds were found to be in good working order, although some erosion was observed where logging roads were installed near the ponds.

MACTEC representatives led the group on a tour of the OU1 and OU2 landfills and the leachate treatment system. Minor areas with a slight loss of vegetation were observed on the OU2 cap and standing water was noted on a small area of the top of the cap. OU2 letdown channels were also observed to have one rodent hole, which MACTEC reports is an ongoing problem that is addressed when found. While observing the area of the recent drum removal, additional exposed drums were noticed along the access road north of OU1, outside of the fenced control area. MACTEC indicated that there are access issues with the property owner and MACTEC is only permitted on the OU1 and OU2 fenced areas.

As part of the site inspection, Skeo Solutions staff visited the designated site repository, Ridgeway Memorial Library, located at 2nd and Walnut Streets, Shepherdsville, Kentucky. Decision documents and previous FYRs were found at the repository.

Skeo Solutions staff conducted research at the Bullitt County Clerk's Office and found the following deeds and restrictive covenant information pertaining to the Site (Table 6).

Table 6: Deed Documents from Bullitt County Public Records Office

Date	Type of Document	Parcel Number*	Description	Book #	Page #
3/15/1999	Restrictive Covenant	0350000029 Restrictive covenant restricting land use, ground water and surface water use		0476	272
11/5/2007	Quit Claim Deed	03500000029	S&S Property and Land Development LLC name change to S&S Land Development Group	0709	0239
12/27/2006	Mortgage Modification	03500000029	Mortgage Modification	0711	0309
12/27/2006	General Warranty Deed	03500000029	Property transferred to S&S Property Land Development	0683	0654
12/27/2006	Mortgage	03500000029	Mortgage between Martha R. Smith and S&S Property Land Development	1131	0623
*Parcel number	03500000029 represe	nts the property boundary identified	d in Figure 2.		

A restrictive covenant limiting land use was filed with Bullitt County on March 15, 1999. Table 7 lists the components of the restrictive covenant that act as institutional controls at the Site. This restrictive covenant should run with the land and all future sales, but the covenant is not referenced in deeds for the sale of the property from the Smiths to S&S Land Development Group, which occurred in 2006. A 2009 ESD was prepared for the Site that allows the reduction of the limits of the land use restriction to the fenced areas of the two OUs plus an 80-foot buffer around the fenced areas. However, remains of drums outside the fenced area were observed during the site inspection; depending on the content of the drums and the results of the investigation of this area, EPA may consider reassessing the area requiring institutional controls.

Table 7: Institutional Control (IC) Summary Table

Media	ICs Called for in the Decision Documents	Impacted Parcel	IC Objective	Instrument in Place	Notes
Ground Water	Yes	03500000029	Restrict future Site land uses to be consistent with remedy in place.	1999 Restrictive Covenant	Ground water on the property may not be utilized as a potable water resource without the express written consent of EPA. Drilling or excavation may not be conducted without express written consent of EPA.
Surface Water	Yes	03500000029	Restrict future Site land uses to be consistent with remedy in place.	1999 Restrictive Covenant	Surface water on the property may not be utilized as potable water resources without the written consent of EPA.
Soil	Yes	03500000029	Restrict future Site land uses to be consistent with remedy in place.	1999 Restrictive Covenant	Prohibits land use for residential or any activity that will disturb the land surface without expressed permission of EPA.

6.6 Interviews

During the FYR process, interviews were conducted with parties impacted by the Site, including the current residents, landowners and regulatory agencies involved in site activities or aware of the Site. The purpose of the interviews was to document the perceived status of the Site and any perceived problems or successes with the phases of the remedy that have been implemented to date. All of the interviews were conducted during the site inspection on March 16, 2011. Interviews are summarized below and complete interviews are included in Appendix C.

<u>Daryl Shaw</u>: Mr. Shaw is one of the current property owners of the Site. He stated that he had the whole property surveyed before and after the retention ponds were built. Retention basins are in place and they have been inspected. They are functioning as designed. Mr. Shaw inspects them regularly and reports that they are in good shape. The only maintenance he has to perform on the basins is pulling occasional limb after storms. Additionally, Mr. Shaw stated that the water levels have not increased since the logging was completed. He stated that in January 2011, his attorney filed the ESD paperwork. The new deed restrictions removed 480 acres from the residential restrictions.

Susan Mallette: Ms. Mallette of KDEP stated that the remedy in place seems to be functioning well. She stated that the remedy originally included a buffer zone, which does not really exist any longer due to the most recent ESD. Without the buffer zone, Ms. Mallette expressed that KDEP has concerns about the Site, especially since drums are found outside of the fenced OUs. She stated that if residences are built, resulting in multiple landowners, then institutional control management could prove to be challenging. Current landowners are not amenable to allowing MACTEC access to or permission to maintain roads on the property. Ms. Mallette also reported that one resident that lives next to the bridge has been concerned about erosion eating away at his property due to water running off the Site. Ford has added riprap to prevent further erosion of the property.

Eddie Taylor: Mr. Taylor, the O&M contractor for Ford, believes that the remedy is working well and that O&M activities have good oversight. He performs normal maintenance on the treatment system. He also takes care of the security fence, monitors and controls erosion problems, and replaces signage when it is vandalized. Mr. Taylor expressed concern that if homes are built on the Site, there will be even more problems with kids getting into the fenced areas of the landfills. More than likely, they will continue to want to use the drain swells for sledding. He is very concerned that kids will damage the remedy. He believes that the schedule for ground water monitoring should be updated to annual monitoring.

<u>Jeff Engels</u>: Mr. Engels of MACTEC, the O&M contractor for the current property owners, believes that the remedy is performing excellently. He states that the level of maintenance and condition of the project is superior. However, Mr. Engels expressed concern about potential residential reuse and the potential of vandalism and lack of site

maintenance. MACTEC had to install a security system for the treatment building, which cost \$40,000.

<u>Resident 1</u>: The resident felt well-informed about Site activities and that the remedy appears fine at the Site. She stated that before the cleanup the Site ruined her and her father's wells.

Resident 2: The resident has lived in the area for seven years and stated that they are not bothered by the Site. The resident did not know about the FYR. He is also unaware of any community problems regarding the Site except for his own yard. He believes that the creek needs to be cleaned out and stated that the creek is eating up his yard as it keeps rising and washes debris down, which is slowly eroding his yard. It also creates a mosquito problem. He stated that something should be done about the creek.

<u>Resident 3</u>: The resident is aware of the Site, but has no comments on the cleanup and current status of the remedy. The resident was not aware of any impacts of the Site on the surrounding community and did not have any concerns about the Site's safety or the protectiveness of the Site's remedy.

Resident 4: The resident is aware of the Site, but did not know that the FYR was taking place. The resident was not aware of any impacts of the Site on the surrounding community and did not have any concerns about the Site's safety or the protectiveness of the Site's remedy. The resident is very concerned about the creek. They think their youngest daughter got very sick from playing in the creek. They no longer let the kids play in the creek. Their daughter has some kind of blood disease, maybe hepatitis.

Resident 5: The resident is aware of the Site, but did not know the FYR was taking place. The resident was not aware of any impacts of the Site on the surrounding community, but she thinks that the treatment plant needs a generator or some type of back-up system for when the power goes out. She is concerned about what happens at the plant if the power is out; for instance, does their drinking water get contaminated because the treatment is not working?

<u>Resident 6</u>: The resident has lived in the area for 35 years and followed Site discovery and cleanup activities. The resident felt well-informed about Site activities and noted that she thinks they have done a good job on the remedy. She is unaware of any problems regarding the Site in the community.

7.0 Technical Assessment

7.1 Question A: Is the remedy functioning as intended by the decision documents?

The review of documents, ARARs, risk assumptions and the site inspection indicate that the Site's remedy is functioning as intended by site documents. The cleanup actions for OU1 were completed in November 1995 and O&M activities began immediately thereafter. The OU1 cleanup activities resulted in the thermal treatment of 21,000 cubic yards of contaminated soils and the construction of an 11-acre capped landfill with a leachate collection system. The cleanup actions for OU2 were completed in September 1998 and resulted in the proper consolidation and capping of the 40-acre, formerly permitted landfill, and the construction of a leachate treatment plant. The leachate collection tanks at the OU1 area were connected to the influent feed of the leachate treatment plant via a force main double-walled pipeline. The connection eliminated the need to haul OU1 leachate by truck to the OU2 leachate treatment plant or to an off-site disposal facility. OU1 and OU2 are each secured and fenced and a security camera system is in place to prevent vandalism and trespassing.

Institutional controls in the form of a 1999 restrictive covenant prevent residential or commercial development or any activity that will result in disturbance of the land surface. The restrictive covenant also restricts ground water and surface water use on site, but it is unclear if contaminated ground water is affecting surface water. A 2009 ESD was prepared for the Site that reduced the scope of the land use restriction to the fenced areas of the two OUs plus an 80-foot buffer around each fenced area. However, an updated restrictive covenant was not located at the Bullitt County records office, so the 1999 restrictive covenant remains in effect across the entire property. If the land use is proposed to change to residential in the area that is within the property boundaries but outside of the OU fenced areas, and that property is found to be contaminated, then the deed restriction will need to be modified or terminated and an Environmental Covenant pursuant to KRS 224 Subchapter 80 will need to be filed with approval of both EPA and KDEP. In addition, the existing 1999 restrictive covenant is not associated with land transfers and should be referenced in future transfers and deeds related to this property.

7.2 Question B: Are the exposure assumptions, toxicity data, cleanup levels and remedial action objectives (RAOs) used at the time of remedy selection still valid?

Exposure assumptions remain valid for ground water, surface water and soil exposure. Remediation levels for consolidation of surface soils and leachate sediments were determined by back-calculating from an individual constituent carcinogenic risk of 1 x 10^{-6} and an individual constituent non-carcinogenic risk of hazard quotient = 0.1 for an adult or a child, whichever was appropriate. If the calculated remediation level (or exposure point concentration) could not be accommodated by contract required quantitation limits, then a slightly higher risk was utilized and another remediation level was calculated. Toxicity data and contract required quantitation limits that were used in determining the remediation levels for soil and sediment are still valid.

The ROD identified KPDES 401 KAR 5:005 as an ARAR for surface water. A letter from the State on July 10, 1997 indicated that KPDES permit requirements were waived, contingent on site effluent meeting the criteria in the letter's attachment. In addition to the risk-based standards for 11 constituents identified in the ROD, the 1997 letter specified effluent standards for an additional 26 contaminants that must be met at the Site. The effluent standards have been updated since the ROD was issued and the Site is currently compliant with the updated effluent standards.

The OU2 ROD states that ground water monitoring requirements must comply with Sections 10 and 11 of 401 KAR 34:060, which states that "[s]hould the ground water monitoring at the Site indicate that the MCLs/MCLGs are consistently exceeded, then an appropriate corrective action will be applied to comply with the MCLs and MCLGs." Current MCLs and MCLGs for site contaminants are listed in Table 8. VOCs and SVOCs have been detected above MCLs in ground water under the Site and residential use is being considered outside of the fenced area at the Site. The Site should be evaluated to determine if a ground water corrective action is necessary. The potential for vapor intrusion, should a structure be built on the Site (e.g., a residence), is unknown and should be evaluated by modeling using a hypothetical future structure.

Table 8: Current MCLs for Detected Ground Water COCs

COC	Current MCL (µg/L) ^a		
Aluminum) (2)		
Arsenic	10		
Barium	2000		
Cadmium	5		
Calcium	Si mile		
Chromium	100		
Cobalt	5 		
Copper	1,300 ^b		
Iron	300°		
Lead	15 ^b		
Magnesium	18 1		
Manganese	50°		
Mercury	2		
Nickel	0		
Potassium	Species		
Silver	50		
Sodium	5 		
Thallium	2		
Vanadium	8		
Zinc	Si mile		
beta-benzenehexachloride	18 1		
Heptachlor	0.4		
2,4-Dichlorophenol	SEE.		
bis(2-Ethylhexyl) Phthalate	6		
4-Chloro-3-Methylphenol			

51

COC	Current MCL (µg/L) ^a
1,1,2-Trichloroethane	5
1,1-Dichloroethane	188
1,2-Dichloroethane	5
1,2-Dichloroethene	70
Acetone	844
Benzene	5
Tetrachloroethene	5.
TCE	5
Vinyl Chloride	2

a. Based on the federal Primary MCL or Secondary under the SDWA (last accessed 4/25/2011).

c. Based on Secondary MCL.

EPA's dioxin reassessment has been developed and undergone review over many years with the participation of scientific experts in EPA and other federal agencies, as well as scientific experts in the private sector and academia. The Agency followed current cancer guidelines and incorporated the latest data and physiological/biochemical research into the assessment. The results of the assessment have currently not been finalized and have not been adopted into state or federal standards. EPA anticipates that a final revision to the dioxin toxicity numbers may be released by the end of 2011. In addition, EPA has proposed to revise the interim preliminary remediation goals (PRGs) for dioxin and dioxin-like compounds, based on technical assessment of scientific and environmental data. However, EPA has not made any final decisions on interim PRGs at this time. Therefore, the dioxin toxicity reassessment for the Site will be updated during the next FYR.

7.3 Question C: Has any other information come to light that could call into question the protectiveness of the remedy?

On May 28, 2008, drums were observed at a location outside of the capped landfill area at OU1. It was initially thought to be six to 13 drums, but when the drum characterization and removal was completed in September 2009, a total of 319 drums, scraps and/or carcasses were removed. If drums are found in the future, EPA and KDEP should immediately be notified. It may be of use to have an EPA-approved generic plan or standard operating procedure in place to facilitate work in the event that additional suspect areas are discovered.

During the FYR site inspection, additional exposed drums were observed outside of the OU1 fenced area. The PRP should work with EPA and KDEP to perform a removal of the drums and possible contaminated soils associated with the drums. The O&M contractor has had difficulty gaining access from the property owner to the Site outside of the fenced areas. Access agreements between the PRP and the property owner should be evaluated to ensure the PRP has access to any drums found outside of the fenced landfill areas.

b. Lead and copper are regulated by a Treatment Technique that requires systems to control the corrosiveness of their water. If more than 10 percent of tap water samples exceed the action level, then water systems must take additional steps.

The Site and portions of the Site have changed ownership since remediation started and the site property area has variously been described as 560 acres, 500 acres, 480 acres, and 460 acres in site documents. The OU boundaries have also not been described in a consistent fashion. The current, accurate site property and OU boundaries should be identified.

7.4 Technical Assessment Summary

The review of documents, ARARs, risk assessment assumptions and the site inspection indicate that the Site's remedy is functioning as intended. The cleanup actions for OU1 were completed in November 1995 and O&M activities began immediately thereafter. The OU1 cleanup activities resulted in the thermal treatment of 21,000 cubic yards of contaminated soils and the construction of an 11-acre capped landfill with a leachate collection system. The cleanup actions for OU2 were completed in September 1998 and resulted in the proper consolidation and capping of the 40-acre, formerly permitted landfill, and the construction of a leachate treatment plant. The leachate collection tanks at the OU1 area were connected to the influent feed of the leachate treatment plant via a force main double-walled pipeline. The connection eliminated the need to haul OU1 leachate by truck to the OU2 leachate treatment plant or to an off-site disposal facility. OU1 and OU2 are each secured and fenced and a security camera system is in place to prevent vandalism and trespassing.

Institutional controls in the form of a 1999 restrictive covenant prevent residential or commercial development or any activity that will result in disturbance of the land surface. The restrictive covenant also restricts ground water and surface water use on site, but it is unclear if contaminated ground water is affecting surface water. A 2009 ESD was prepared for the Site that reduced the scope of the land use restriction to the fenced areas of the two OUs plus an 80-foot buffer around each fenced area. However, an updated restrictive covenant was not located at the Bullitt County records office, so the 1999 restrictive covenant remains in effect across the entire property. If the land use is proposed to change to residential in the area that is within the property boundaries but outside of the OU fenced areas, and that property is found to be contaminated, then the deed restriction will need to be modified or terminated and an Environmental Covenant pursuant to KRS 224 Subchapter 80 will need to be filed with approval of both EPA and KDEP. In addition, the existing 1999 restrictive covenant is not associated with land transfers and should be referenced in future transfers and deeds related to this property.

On May 28, 2008, drums were observed at a location outside of the capped landfill area at OU1. It was initially thought to be six to 13 drums, but when the drum characterization and removal was completed in September 2009, a total of 319 drums, scraps and carcasses were removed. If drums are found in the future, EPA and KDEP should immediately be notified.

During the FYR site inspection, additional exposed drums were observed outside of the OU1 fenced area. The PRP should work with EPA and KDEP to perform a removal of the drums and possible contaminated soils associated with the drums. The O&M

contractor has had difficulty gaining access from the property owner to the Site outside of the fenced areas. Access agreements between the PRP and the property owner should be evaluated to ensure the PRP has access to any drums found outside of the fenced landfill areas.

The Site and portions of the Site have changed ownership since remediation started and the site property area has variously been described as 560 acres, 500 acres, 480 acres, and 460 acres in site documents. The OU boundaries have not been described in a consistent fashion. The current, accurate site property and OU boundaries should be identified and used in future site reports, including the annual O&M reports.

The ROD identified KPDES 401 KAR 5:005 as an ARAR for surface water. A letter from the State on July 10, 1997 indicated that KPDES permit requirements were waived, contingent on site effluent meeting the criteria in the letter's attachment. In addition to the risk-based standards for 11 constituents identified in the ROD, the 1997 letter specified effluent standards for an additional 26 contaminants that must be met at the Site. The effluent standards have been updated since the ROD was issued and the Site is currently compliant with the updated effluent standards.

The OU2 ROD states that ground water monitoring requirements must comply with Sections 10 and 11 of 401 KAR 34:060, which states that "[s]hould the ground water monitoring at the Site indicate that the MCLs/MCLGs are consistently exceeded, then an appropriate corrective action will be applied to comply with the MCLs and MCLGs." VOCs and SVOCs have been detected above MCLs in ground water under the Site and residential use is being considered outside of the fenced area at the Site. The Site should be evaluated to determine if a ground water corrective action is necessary. The vapor intrusion potential into hypothetical future structures should be evaluated.

EPA's dioxin reassessment has been developed and undergone review over many years with the participation of scientific experts in EPA and other federal agencies, as well as scientific experts in the private sector and academia. The Agency followed current cancer guidelines and incorporated the latest data and physiological/biochemical research into the assessment. The results of the assessment have currently not been finalized and have not been adopted into state or federal standards. EPA anticipates that a final revision to the dioxin toxicity numbers may be released by the end of 2011. In addition, EPA has proposed to revise the interim PRGs for dioxin and dioxin-like compounds, based on technical assessment of scientific and environmental data. However, EPA has not made any final decisions on interim PRGs at this time. Therefore, the dioxin toxicity reassessment for the Site will be updated during the next FYR.

8.0 Issues

Table 9 summarizes the current site issues.

Table 9: Current Site Issues

Issue	Affects Current Protectiveness (Yes or No)	Affects Future Protectiveness (Yes or No)
Remains of drums outside the fenced area were observed during the site inspection.	No	Yes
It is unknown if contaminated ground water is affecting surface water.	No	Yes
The OU2 ROD states that ground water monitoring requirements must comply with Sections 10 and 11 of 401 KAR 34:060, which states that "[s]hould the ground water monitoring at the Site indicate that the MCLs/MCLGs are consistently exceeded, then an appropriate corrective action will be applied to comply with the MCLs and MCLGs." Contaminants are detected above MCLs and are increasing at some monitoring wells in site ground water sampling.	No	Yes
VOCs have been detected in site ground water monitoring wells and the future use of portions of the Site might be residential.	No	Yes
The Site and portions of the Site have changed ownership since remediation started and the site property area has variously been described as 560 acres, 500 acres, 480 acres, and 460 acres in site documents.	No	Yes
Historical documents, including the 1989 RI, describe OU1 as an 80 acre disposal area and OU2 as a 37.5 acre landfill. More recent documents refer to OU1 and OU2 as a combined total of 80 acres. The OU boundaries are not described in a consistent fashion.	No	Yes

9.0 Recommendations and Follow-up Actions

Table 10 provides recommendations to address the current site issues.

Table 10: Recommendations to Address Current Site Issues

Issue	Recommendations / Follow-Up Actions	Party Oversight Responsible Agency			Milestone Date	Affe Protectiv (Yes or	eness?
	-	-			Current	Future	
Remains of drums outside the fenced area were observed during the site inspection.	Remove drums found during the site inspection and any contaminated soil associated with the drums.	PRP	EPA	09/01/2012	No	Yes	
It is unknown if contaminated ground water is affecting surface water.	Evaluate the Site to determine if contaminated ground water is affecting the surface water.	PRP	EPA	03/30/2013	No	Yes	
The OU2 ROD states that ground water monitoring requirements must comply with Sections 10 and 11 of 401 KAR 34:060, which states that "[s]hould the ground water monitoring at the Site indicate that the MCLs/MCLGs are consistently exceeded, then an appropriate corrective action will be applied to comply with the MCLs and MCLGs." Contaminants are detected above MCLs and are increasing at some monitoring wells in site ground water sampling.	Evaluate the Site to determine if a ground water corrective action is necessary. Further characterization of the ground water contamination plume may be part of the evaluation.	PRP	EPA	03/30/2013	No	Yes	
VOCs have been detected in site ground water monitoring wells and the future use of portions of the Site might be residential.	Use modeling to evaluate the potential for vapor intrusion in a structure built on the Site outside of the fenced areas	PRP	EPA	03/30/2013	No	Yes	
The Site and portions of the Site have changed ownership since	Define the current, accurate site property boundary.	EPA	EPA	09/01/2012	No	Yes	

Issue	Recommendations / Follow-Up Actions	Party Responsible	Oversight Agency	Milestone Date	Affeo Protectiv (Yes or	eness?
remediation started and the site property area has variously been described as 560 acres, 500 acres, 480 acres, and 460 acres in site documents.						
Historical documents, including the 1989 RI, describe OU1 as an 80 acre disposal area and OU2 as a 37.5 acre landfill. More recent documents refer to OU1 and OU2 as a combined total of 80 acres. The OU boundaries are not described in a consistent fashion.	Using historical documents, resolve OU1 and OU2 area and boundary discrepancies and map the original, historical boundaries in future annual O&M reports and any other CERCLA documents.	PRP	EPA	03/30/2012	No	Yes

10.0 Protectiveness Statements

The remedy at both OU1 and OU2 currently protects human health and the environment in the short term because drums and contaminated soils were consolidated and capped on site, institutional controls are in place to prevent inappropriate use of the land, and nearby residents are on municipal water. However, in order for the remedy to be protective in the long term, the following actions need to be taken to ensure long-term protectiveness:

- Remove drums found during the site inspection and any contaminated soil associated with the drums.
- Evaluate the Site to determine if contaminated ground water is affecting the surface water.
- Evaluate the Site to determine if a ground water corrective action is necessary.
- Evaluate the potential for vapor intrusion.
- Define the current, accurate site property boundary.
- Using historical documents, resolve OU1 and OU2 area and boundary discrepancies and map the original, historical boundaries in future annual O&M reports and any other CERCLA documents.

11.0 Next Review

The Site requires ongoing FYRs as long as waste is left on site that does not allow for unrestricted use and unlimited exposure. The next FYR will be due within five years of the signature/approval date of this FYR.

Appendix A: List of Documents Reviewed

2006 Annual Operation and Monitoring Report, Smith's Farm Operable Units One and Two. Prepared by MACTEC for EPA Region 4. March 2007.

2007 Annual Operation and Monitoring Report, Smith's Farm Operable Units One and Two. Prepared by MACTEC for EPA Region 4. March 2008.

2008 Annual Operation and Monitoring Report, Smith's Farm Operable Units One and Two. Prepared by MACTEC for EPA Region 4. March 2009.

2009 Annual Operation and Monitoring Report, Smith's Farm Operable Units One and Two. Prepared by MACTEC for EPA Region 4. March 2010.

2010 Annual Operation and Monitoring Report, Smith's Farm Operable Units One and Two. Prepared by MACTEC for EPA Region 4. March 2011.

CERCLA Information System Site Information accessed from website http://cfpub.epa.gov/supercpad/cursites/csitinfo.cfm?id=0402059. Accessed February-May 2011.

EPA Superfund Explanation of Significant Differences. Smith's Farm NPL Site (Operable Unit Two). Brooks, Bullitt County, Kentucky. EPA Region 4. November 2009.

EPA Superfund Five-Year Review. Smith's Farm (Brooks) CERCLA NPL Site. Bullitt County, Kentucky. EPA Region 4. September 1998.

EPA Superfund Record of Decision: Smith's Farm. EPA ID: KYD097267413. OU1. Brooks, Kentucky. Prepared by EPA Region 4. September 29, 1989.

EPA Superfund Record of Decision Amendment: Smith's Farm. EPA ID: KYD097267413. OU1. Brooks, Kentucky. Prepared by EPA Region 4. September 30, 1991.

EPA Superfund Record of Decision: Smith's Farm. EPA ID: KYD097267413. OU2. Brooks, Kentucky. Prepared by EPA Region 4. September 17, 1993.

Interim Draft Drum and Debris Characterization and Disposal Report. Smith's Farm Operable Units One and Two. Prepared by MACTEC for EPA Region 4. May 6, 2011.

First Five-Year Review Report for Smiths' Farm Landfill Operable Unit 2. Brooks, Bullitt County, Kentucky. Prepared by US Army Corp of Engineers for EPA Region 4. September 2001.

Superfund Third Five-Year Review Report. Smith's Farm Landfill. Brooks, Bullitt County, Kentucky. Prepared by US Army Corp of Engineers for EPA Region 4. September 2006

Preliminary Close Out Report. Smith's Farm CERCLA NPL Site. Brooks, Bullitt County, Kentucky. EPA Region 4. September 1998.

Appendix B: Press Notice

The U. S. Environmental Protection Agency, Region 4 Announces the Fourth Five-Year Review for the Smith's Farm Superfund Site (Brooks, Bullitt County, Kentucky)

Purpose/Objective: The U.S. Environmental Protection Agency (EPA) is conducting a Five-Year Review of the remedy for the Smith's Farm Superfund site (the Site) in Brooks, Kentucky. The purpose of the Five-Year Review is to ensure that the selected cleanup actions effectively protect human health and the environment.

Site Background: The 460-acre Site is a former hazardous waste disposal area located approximately 12 miles south of Louisville. Land use in the area is predominantly rural residential. The Site is bordered by deciduous forest to the north, east and west and a residential area to the south. Intermittent streams flow along the north-central portion of the Site and drain into the Unnamed Tributary of Bluelick Creek, which subsequently flows into Floyd's Fork. The Site includes an 80-acre area that was used for unpermitted disposal of drums containing hazardous waste for approximately 30 years. It also includes an approximately 40-acre landfill that was permitted by the Commonwealth of Kentucky (the State) for the disposal of inert industrial waste from 1973 to 1989; the landfill had been used for disposal of industrial waste since the 1950s. Spent paint thinners, off-specification paints, paint booth sludges, metal shavings from machining operations, asbestos, off-specification epoxies, and waste motor and transmission fluids are examples of contaminated materials disposed of at the Site. Disposal activities in both areas have resulted in contamination of on-site environmental media. Contaminants included a wide variety of volatile and semi-volatile organic compounds as well as heavy metals. Leachate flowing from the Site threatened the streams which run through the site to the nearby Salt River. Soil and surface water contamination threatened nearby residential areas.

Cleanup Actions: In 1984, at the request of the State, EPA completed the removal of several thousand drums from the unpermitted drum disposal area, and surfaced the area with clay to mitigate leachate problems. EPA designated two operable units (OUs) to address the Site's remaining contamination: OU1 (unpermitted former drum disposal area) and OU2 (formerly-permitted landfill area). EPA selected OU1's remedy in the Site's 1989 Record of Decision (ROD) and amended the ROD in 1991. The selected remedy included excavation, treatment and containment of contaminated soil, sediments and wastes in a new, 11-acre landfill, installation of retaining walls and a leachate collection system, perimeter fencing, ground water monitoring and institutional controls. EPA selected OU2's remedy in the Site's 1993 ROD. The selected remedy included waste consolidation and landfill capping, installation of a leachate collection and treatment system, perimeter fencing, ground water monitoring and institutional controls. In 1995, EPA issued an Explanation of Significant Differences (ESD) to document the installation of a new culvert and the decision not to restart the leachate collection system. Cleanup actions for OU1 were completed in November 1995. Operation and Maintenance (O&M) activities began immediately thereafter. The cleanup activities resulted in the thermal treatment of 21,000 cubic yards of contaminated soils and the construction of an 11-acre capped landfill with a leachate collection system. Cleanup actions for OU2 were completed in September 1998 and resulted in the proper consolidation and capping of the 40-acre formerly permitted landfill and the construction of a leachate treatment plant. OU1 leachate collection in the proper consolidation and capping of the 40-acre formerly permitted landfill and the construction of a leachate treatment plant via a force main double-walled pipeline. The connection eliminated the need to hau1 leachate by truck to the leachate treatment plant via a force main double-walled pipeline. T

Five-Year Review Schedule: The National Contingency Plan requires that remedial actions resulting in any hazardous substances, pollutants or contaminants remaining at Superfund sites above levels that allow for unlimited use and unrestricted exposure be reviewed every five years to ensure the protection of human health and the environment. The fourth of the Five-Year Reviews for the Site will be completed by September 2011.

EPA invites community participation in the Five-Year Review process: EPA is conducting the Five-Year Review to evaluate the effectiveness of the Site's remedy and to ensure that the remedy remains protective of human health and the environment. As part of the Five-Year Review process, EPA staff are available to answer any questions about the Site. Community members who have questions about the Site or the Five-Year Review process, or who would like to participate in a community interview, are asked to contact:

Cathy Amoroso, Remedial Project Manager Phone: 404-562-8637 E-mail: Amoroso.Cathy@epa.gov

Tonya Whitsett, Community Involvement Coordinator Phone: Toll Free 877-718-3752, ext. 28633 E-mail: Whitsett.Tonya@epa.gov

Mailing Address: U.S. EPA Region 4, 61 Forsyth St. S.W., 11th Floor, Atlanta, GA 30303-8960

Site information is also available at the local document repository, Ridgeway Memorial Library, 127 North Walnut Street, Shepherdsville, Kentucky 40165, and online at http://www.epa.gov/region4/waste/npl/nplky/smilrmky.htm

Appendix C: Interview Forms

Smith's Farm Superfund Site Five-Year Review Interview Form

Site Name: Smith's Farm EPA ID No.: KYD097267413
Interviewer Name: Rhode Bicknell Affiliation: Skeo Solutions
Subject Name: Darryl Shaw Affiliation: S&S Property Land

Development

Time: 12:00 PM Date: 3/16/2011

Interview Location: Smith's Farm

Interview Format (circle one): In Person Phone Mail Other:

Interview Category: Land Owner

1. What is your assessment of the current performance of the remedy in place at the Site? Retention basins are in place and they have been inspected. They are functioning as designed. I have not seen any increase in water levels since the logging.

2. Have you had the property re-surveyed?

I had the whole property surveyed a year and half ago. The Basins were resurveyed as part of inspection when completed.

- 3. Have land use controls been implemented as per the 11/2009 ESD? Yes, in December 2009 or January 2010, our attorney filed paperwork. The new deed restrictions removed 480 acres from the residential restrictions.
- 4. What is the current condition of the retention basins, how often are they inspected, and who inspects them?

I inspect them regularly and they are in good shape. There has been no maintenance necessary to the basins outside of pulling occasional limb after storms. I inspect them at least once a month.

- 5. How often are you finding that maintenance needs to be performed on the retention basins? What kind of maintenance is performed?

 No maintenance has been necessary outside of pulling limbs. Basins are well vegetated.
- 6. Have there been any security issues or un-authorized access to the property? Yes, about every day. Motorcycles and 4 wheelers come on the property. We have to leave the gate open when on the premises for emergency access reasons. Still some dumping is occurring. One of our 4 wheelers was stolen. On OU1 there has been no trespassing into actual landfill. OU2, kids use as a sledding hill. OU2 has motorcycle and 4 wheelers coming on to it. Eddie is on site often and calls if trespassers have come through gate.
- 7. Are you aware of any complaints or inquiries regarding environmental issues or the remedial action from residents since implementation of the cleanup?

 No. Cleanup happened before I bought it.

8. Do you have any comments, suggestions or recommendations regarding the management or operation of the Site's remedy?

The main thing is that clients do not like seeing drums on the premises. We would like stuff like that (drums) put next to the building or under a tarp or something.

Smith's Farm Superfund Site Five-Year Review Interview Form

Site Name:Smith's FarmEPA ID No.:KYD097267413Interviewer Name:Rhode BicknellAffiliation:Skeo SolutionsSubject Name:Eddie TaylorAffiliation:MACTEC

Subject Contact Information: Plant: 502-955-5349

Time: 1:25 PM Date: 3/16/2011

Interview Location: Smith's Farm

Interview Format (circle one): In Person Phone Mail Other:

Interview Category: O&M Contractor

1. What is your overall impression of the project; including cleanup, maintenance, and reuse activities (as appropriate)?

Doing pretty good job. When I tell them there is a problem, they are very responsive.

- 2. What is your assessment of the current performance of the remedy in place at the Site? Performing as intended. I don't know how many drums are buried out there. The plans for the future depend on whether there are 200 or 20,000 drums burried. Thirty years is not going to be enough to clean leachate or to reduce leachate if thousands of drums are buried.
- 3. What are the findings from the monitoring data? What are the key trends in contaminant levels that are being documented over time at the Site?

 There are some changes month to month, but I adapt the system to adapt to the changes.
- 4. Is there a continuous on-site O&M presence? If so, please describe staff responsibilities and activities. Alternatively, please describe staff responsibilities and the frequency of site inspections and activities if there is not a continuous on-site O&M presence.

 Yes, conducting normal maintenance operation of treatment. Activities are taking care of security fence; monitoring controlling erosion problems; moving signage.
- 5. Have there been any significant changes in site O&M requirements, maintenance schedules or sampling routines since start-up or in the last five years? If so, do they affect the protectiveness or effectiveness of the remedy? Please describe changes and impacts. No day-to-day changes in O&M activities. More safety protocols and more safety plans have been implemented.
- Have there been unexpected O&M difficulties or costs at the Site since start-up or in the last five years? If so, please provide details.
- 7. Have there been opportunities to optimize O&M activities or sampling efforts? Please describe changes and any resulting or desired cost savings or improved efficiencies. Monitoring data are good enough that we can monitor wells once a year, I think. If they decide to build homes, there will be even more problems with kids getting into the fenced areas of the landfills. They will want to use the drain swells. I am very concerned the

kids will do damage.

8. Do you have any comments, suggestions or recommendations regarding O&M activities and schedules at the Site?

No

Smith's Farm Superfund Site Five-Year Review Interview Form

Site Name: Smith's Farm EPA ID No.: KYD097267413
Interviewer Name: Johnny Zimmerman- Affiliation: Skeo Solutions

Ward

Subject Name: <u>Susan Mallette</u> Affiliation: <u>KDEP</u>

Subject Contact Information: Susan.Mallette@ky.gov

Time: 1:15PM Date: 3/16/2011

Interview Location: Site

Interview Format (circle one): In Person Phone Mail Other:

Interview State Agency Category:

1. What is your overall impression of the project; including cleanup, maintenance, and reuse activities (as appropriate)?

Overall, MACTEC has done a good job with the maintenance of both OUs. We have concerns about the residential reuse of the property outside of the restricted area.

- 2. What is your assessment of the current performance of the remedy in place at the Site? *Good, we have no concerns.*
- 3. Are you aware of any complaints or inquiries regarding site-related environmental issues or remedial activities from residents in the past five years?

 Yes, one resident that lives next to the bridge has been concerned about erosion eating away at his property due to water running off the Site. Ford has added riprap to prevent further erosion of the property.
- 4. Has your office conducted any site-related activities or communications in the past five years? If so, please describe the purpose and results of these activities. KDEP visited the Site before and during logging operations and when the site operator found drums, KDEP was present for some of the cleanup.
- 5. Are you aware of any changes to state laws that might affect the protectiveness of the Site's remedy?
 No
- 6. Are you comfortable with the status of the institutional controls at the Site? If not, what are the associated outstanding issues?

It is unclear what the actual status of the institutional controls is currently. If they haven't changed from the previous form, then it's fine. The current property plans are a concern if residences are built, and there are multiple landowners, institutional control management could prove to be tricky. Current landowners are not amenable to allowing MACTEC access to or permission to maintain roads on the property (landfill and treatment plant will be surrounded by private homes if residences are built). There could also be potential issues of fire with the logging and dry conditions, as well as vapor issues.

- 7. Are you aware of any changes in projected land use(s) at the Site? *Yes, possible residential use is being considered.*
- 8. Do you have any comments, suggestions or recommendations regarding the management or operation of the Site's remedy?

The remedy in place seems to be functioning well. The remedy originally included a buffer zone which does not really exist any longer due to most recent ESD. Without the buffer KDEP has concerns about the Site, especially since drums are found outside of the OUs.

Smith's Farm Superfund Site Five-Year Review Interview Form

Site Name: Smith's Farm EPA ID No.: KYD097267413
Interviewer Name: Johnny Zimmerman- Affiliation: Skeo Solutions

Ward

Subject Name: <u>Jeffery Engels</u> Affiliation: <u>MACTEC</u>

Subject Contact Information:

Time: 1:35PM <u>Date:</u> 3/16/2011

Interview Location: Site

Interview Format (circle one): <u>In Person</u> Phone Mail Other:

Interview Category: O&M Contractor

1. What is your overall impression of the project; including cleanup, maintenance, and reuse activities (as appropriate)?

Overall, excellent. The level of maintenance and condition of the project is superior. We are suspicious of potential reuse and the potential of vandalism and lack of site maintenance if the Site is in reuse.

- 2. What is your assessment of the current performance of the remedy in place at the Site? *Excellent*.
- 3. What are the findings from the monitoring data? What are the key trends in contaminant levels that are being documented over time at the Site?

 Defer to Judy Hartness at MACTEC (770.421.3353) for trends.
- 4. Is there a continuous on-site O&M presence? If so, please describe staff responsibilities and activities. Alternatively, please describe staff responsibilities and the frequency of site inspections and activities if there is not a continuous on-site O&M presence.

 Two people are on site three times a week and are in control of all O&M and sampling of the facility. They repair fences and address security issues as they come up.
- 5. Have there been any significant changes in site O&M requirements, maintenance schedules or sampling routines since start-up or in the last five years? If so, do they affect the protectiveness or effectiveness of the remedy? Please describe changes and impacts. We started sampling the Category D wells two to three years ago (confirm this start date with Judy). We no longer have access from owners to site roads outside of OU1 and OU2.
- 6. Have there been unexpected O&M difficulties or costs at the Site since start-up or in the last five years? If so, please provide details.

 We have had to install a security system for the treatment building, which was \$40,000.
- 7. Have there been opportunities to optimize O&M activities or sampling efforts? Please describe changes and any resulting or desired cost savings or improved efficiencies. Eddie, the site operator, is very frugal and optimizes when the opportunity arises. We have updated the analytical methods on sampling as well.

8.	Do you have any comments, suggestions or recommendations regarding O&M activities and schedules at the Site? We will keep it going steady as is.

Smith's Farm Superfund Site Five-Year Review Interview Form

Site Name:Smith's FarmEPA ID No.:KYD097267413Interviewer Name:Tonya WhitsettAffiliation:EPA Region 4

Subject Name: Resident 1 Affiliation:

Time: 1:10 <u>Date:</u> 3/16/2011

Interview Location: Resident's Home (Community Surrounding Site)

Interview Format (circle one): In Person Phone Mail Other:

Interview Category: Residents

1. Are you aware of the former environmental issues at the Site and the cleanup activities that have taken place to date? *Yes, I am aware of Site.*

- 2. What is your overall impression of the project; including cleanup, maintenance, and reuse activities (as appropriate)?

 I think it is good.
- 3. What have been the effects of this Site on the surrounding community, if any? It (the Site) ruined my well water. It ruined my father's well water. We are on city water now.
- 4. Have there been any problems with unusual or unexpected activities at the Site, such as emergency response, vandalism or trespassing?

 No. Used to go back there with 4 wheeler but not now.
- 5. Has EPA kept involved parties and surrounding neighbors informed of activities at the Site? How can EPA best provide site-related information in the future? Best way to contact me is mail.
- 6. Do you own a private well in addition to or instead of accessing city/municipal water supplies? If so, for what purpose(s) is your private well used?

 No. Using city water. Tore my pump down and capped it.
- 7. Do you have any comments, suggestions or recommendations regarding any aspects of the project?

I think it's fine. They should do something about the water treatment plant behind us. There used to be raw sewage that ran down hill. It had a very bad smell to the point I could not eat outside on my patio.

Smith's Farm Superfund Site Five-Year Review Interview Form

Site Name: Smith's Farm EPA ID No.: KYD097267413
Interviewer Name: Tonya Whitsett Affiliation: EPA Region 4
Subject Name: Resident 2 Affiliation:
Subject Contact Information:

Time: 1:35 Date: 3/16/2011

Interview Location: Resident's Home (Community Surrounding Site)

Interview Format (circle one): In Person Phone Mail Other:

Interview Category: Residents

1. Are you aware of the former environmental issues at the Site and the cleanup activities that have taken place to date? *Yes, I have lived here seven years.*

2. What is your overall impression of the project; including cleanup, maintenance, and reuse activities (as appropriate)?

Not bothering us none.

- 3. What have been the effects of this Site on the surrounding community, if any? *Not as far as I know. We keep kids out of creek.*
- 4. Have there been any problems with unusual or unexpected activities at the Site, such as emergency response, vandalism or trespassing?

 No, not as far as I know. Four wheelers ride up creek.
- 5. Has EPA kept involved parties and surrounding neighbors informed of activities at the Site? How can EPA best provide site-related information in the future?

 No I had heard that there was going to be a review. Wife gets paper once in a while.
- 6. Do you own a private well in addition to or instead of accessing city/municipal water supplies? If so, for what purpose(s) is your private well used?

 No, we are not on well water. We use city water.
- 7. Do you have any comments, suggestions or recommendations regarding any aspects of the project?

No. Creek needs to be cleaned out. The creek is eating up my yard. It keeps rising and washes things down and it is slowly eating up my yard. It also creates a massive mosquito problem. They really need to do something about the creek.

Smith's Farm Superfund Site		Five-Year Review Interview For			
Site Name: Smith	s Farm	EPA ID No.:	KYD097267413		
Interviewer Name:	Tonya Whitsett	Affiliation:	EPA Region 4		
Subject Name:	Resident 3	Affiliation:	3 <u></u>		
Subject Contact Info	rmation:				
Time:		Date: 3/16/2	<u>011</u>		
Interview Location:	Resident's Home (Cor	nmunity Surround	<u>ling Site)</u>		
Interview Format (ci	rcle one): In Person	Phone M	ail Other:		

- 1. Are you aware of the former environmental issues at the Site and the cleanup activities that have taken place to date? *Yes, I am aware of Site.*
- 2. What is your overall impression of the project; including cleanup, maintenance, and reuse activities (as appropriate)?

 No comment, did they bury drums?
- 3. What have been the effects of this Site on the surrounding community, if any? *None that I know of.*
- 4. Have there been any problems with unusual or unexpected activities at the Site, such as emergency response, vandalism or trespassing?

 No.
- 5. Has EPA kept involved parties and surrounding neighbors informed of activities at the Site? How can EPA best provide site-related information in the future? *Newspaper*.
- 6. Do you own a private well in addition to or instead of accessing city/municipal water supplies? If so, for what purpose(s) is your private well used? *Yes, but it is closed. We are on city water now.*
- 7. Do you have any comments, suggestions or recommendations regarding any aspects of the project?

 I am concerned about the water quality, but I know you all don't have anything to do with

I am concerned about the water quality, but I know you all don't have anything to do with that.

Smith's Farm Superfund Site			Five-Year Review Interview Forn			form
Site Name: Smith	's Farm		EPA ID No.:	KYI	D097267413	
Interviewer Name:	Tonya W	<u>nitsett</u>	Affiliation:	EPA	Region 4	
Subject Name:	Resident 4	<u>L</u>	Affiliation:	19		
Subject Contact Info	rmation:					
Time: $3:20$			Date: 3/16/2	<u> 2011</u>		
Interview Location:	Resident's	Home (Com	munity Surroun	ding S	<u>Site)</u>	
Interview Format (c	ircle one):	In Person	Phone M	ail	Other:	

- 1. Are you aware of the former environmental issues at the Site and the cleanup activities that have taken place to date? *Yes.*
- 2. What is your overall impression of the project; including cleanup, maintenance, and reuse activities (as appropriate)?

 Not here at the time it was cleaned up.
- 3. What have been the effects of this Site on the surrounding community, if any? *Not as far as I know.*
- 4. Have there been any problems with unusual or unexpected activities at the Site, such as emergency response, vandalism or trespassing?

 No.
- 5. Has EPA kept involved parties and surrounding neighbors informed of activities at the Site? How can EPA best provide site-related information in the future? *I did not know that there was a review going on.*
- 6. Do you own a private well in addition to or instead of accessing city/municipal water supplies? If so, for what purpose(s) is your private well used? *No*.
- 7. Do you have any comments, suggestions or recommendations regarding any aspects of the project?

We are very concerned about the water in the creek. We think our little girl got very sick from playing in the creek. We no longer let the kids play in the creek. She has some kind of blood thing, maybe hepatitis. She may have gotten from playing in the creek because there is sewage sometimes in the creek.

Smith's Farm Superfund Site	Five-Year Review Interview Form		
Site Name: Smith's Farm	EPA ID No.: KYD097267413		
Interviewer Name: Tonya Whitsett	Affiliation: EPA Region 4		
Subject Name: Resident 5	Affiliation:		
Subject Contact Information:			
Time: 3:30	Date: 3/16/2011		
Interview Location: Resident's Home (Comm	unity Surrounding Site)		
Interview Format (circle one): In Person	Phone Mail Other:		

1. Are you aware of the former environmental issues at the Site and the cleanup activities that have taken place to date?

Yes, I am aware of Site. Never been back there.

2. What is your overall impression of the project; including cleanup, maintenance, and reuse activities (as appropriate)?

Never been back there.

- 3. What have been the effects of this Site on the surrounding community, if any? *Not that I hear of.*
- 4. Have there been any problems with unusual or unexpected activities at the Site, such as emergency response, vandalism or trespassing?

 I think the plant needs a generator or a back up system. When the power went out, we got our power back fast because ours is the same as the plant. What happens if the electricity goes down? Does that stuff go back into our water?
- 5. Has EPA kept involved parties and surrounding neighbors informed of activities at the Site? How can EPA best provide site-related information in the future? *Best way to contact me is mail.*
- 6. Do you own a private well in addition to or instead of accessing city/municipal water supplies? If so, for what purpose(s) is your private well used?

 No. Using city water.
- 7. Do you have any comments, suggestions or recommendations regarding any aspects of the project?

The creek smells bad and all kinds of dangerous stuff washes down.

Smith's Farm Superfund Site		Five-Yea	r Review Interview Fo	orm
Site Name: Smith	's Farm	EPA ID No.:	KYD097267413	
Interviewer Name:	Tonya Whitsett	Affiliation:	EPA Region 4	
Subject Name:	Resident 6	Affiliation:	19	
Subject Contact Info	rmation:			
Time:		Date: 3/16/2	<u>011</u>	
Interview Location:	Resident's Home (Co	mmunity Surround	ling Site)	
Interview Format (ci	rcle one): In Person	Phone M	ail Other:	

- 1. Are you aware of the former environmental issues at the Site and the cleanup activities that have taken place to date? *Yes, been here 35 years.*
- 2. What is your overall impression of the project; including cleanup, maintenance, and reuse activities (as appropriate)?

 Seems like they have done a pretty good job at the Site.
- 3. What have been the effects of this Site on the surrounding community, if any? *Not really*.
- 4. Have there been any problems with unusual or unexpected activities at the Site, such as emergency response, vandalism or trespassing?

 Not that I am aware of, no concerns about Site.
- 5. Has EPA kept involved parties and surrounding neighbors informed of activities at the Site? How can EPA best provide site-related information in the future? *Yes, no other suggestions.*
- 6. Do you own a private well in addition to or instead of accessing city/municipal water supplies? If so, for what purpose(s) is your private well used?

 No. Using city water.
- 7. Do you have any comments, suggestions or recommendations regarding any aspects of the project?
 - No, except the city won't clean out the ditch in front of my house. They just come and messed it up without fixing it back.

Appendix D: Site Inspection Checklist

FIVE-YEAR REVIEW SITE INSPECTION CHECKLIST						
I. SITE INFORMATION						
Site name: Smith's Farm	Date of inspection: 3/16/2011					
Location and Region: Brooks, Kentucky, Region 4	EPA ID: KYD097267413					
Agency, office, or company leading the five-year review: EPA, Region 4	Weather/temperature:					
Remedy Includes: (Check all that apply)	 ☐ Monitored natural attenuation ☐ Groundwater containment ☑ Vertical barrier walls 					
Attachments:	☐ Site map attached					
II. INTERVIEWS	(Check all that apply)					
1. O&M site manager Eddie Taylor Name	O&M Operator 03/16/2 Title Date hone no. 502-817-1270	2011				
2. O&M staff <u>Jeff Engels</u> Name	MACTEC O&M Title Phone no	2011				

3.	Local regulatory authorities and response agencies (i.e., State and Tribal offices, emergency response office, police department, office of public health or environmental health, zoning office, recorder of deeds, or other city and county offices, etc.). Fill in all that apply.						
	Agency Owner Contact Daryl Shaw Name	Owne Title	Date	502-639-3075 Phone No.			
	Problems; suggestions;	Report attached see App	pendix C				
	Agency KDEP Contact Susan Mallette Name Problems; suggestions;	Title	03/16/2011 Date	Phone No.			
	Agency Contact Name	Title		Phone No.			
	Problems; suggestions;	Report attached see App	pendix C				
	Agency Contact						
	Name	Title		Phone No.			
	Problems; suggestions;	Report attached see App	pendix C				
	Agency						
	Contact Name	Title	Date	Phone No.			
e de la constante de la consta	Problems; suggestions;		pendix C				
4.	Other interviews (options	al) 🗵 Report attached					
Residen	t 1, 2, 3, 4, 5, 6						
	III. ON-SITE DOO	CUMENTS & RECORI	DS VERIFIED (Check	all that apply)			
1.	O&M Documents				8		
	O&M manual	Readily available		1 2	I/A		
	As-built drawings	Readily available	150 S				
	Maintenance logs	Readily available	Up to date		I/A		
	Remarks:				2000 to		
2.	Site-Specific Health and	l Safety Plan	Readily available	Up to date	□ N/A		
	Contingency plan/emo	ergency response plan	Readily available	Up to date	□ N/A		
_	Remarks:						
3.	O&M and OSHA Train	ing Records	Readily available	Up to date	□ N/A		
	Remarks:						

4.	Permits and Service Agreements				
	☐ Air discharge permit		Readily available	Up to date	N/A
	☐ Effluent discharge		Readily available	Up to date	N/A
	☐ Waste disposal, POTW		Readily available	Up to date	□ N/A
	Other permits Solid Waste		Readily available	Up to date	□ N/A
	Remarks:				
5.	Gas Generation Records		Readily available	Up to date	□ N/A
	Remarks: Gas Vents sampled in late 200	8.			
6.	Settlement Monument Records		Readily available	Up to date	N/A
	Remarks:				
7.	Groundwater Monitoring Records		Readily available	Up to date	□ N/A
	Remarks:				
8.	Leachate Extraction Records		Readily available	Up to date	□ N/A
	Remarks:				
9.	Discharge Compliance Records				
	☐ Air ☐ Readily a	available	Up to date	\boxtimes N	T/A
		available	Up to date	\square N	I/A
	Remarks: Annual report				
10.	Daily Access/Security Logs		Readily available	Up to date	□ N/A
	Remarks: There is no security log, but the	e security	system logs all entries.		
	IV.	0&M C	COSTS		
1.	O&M Organization				
	State in-house		Contractor for State		
	PRP in-house	\boxtimes	Contractor for PRP		
	Federal Facility in-house	62	Contractor for Federal	Facility	

2.	2. O&M Cost Records						
	Readily available	Readily available					
	Funding mechani	☐ Funding mechanism/agreement in place					
	Original O&M cost of	estimate <u>\$425,000</u> B	reakdown attached				
		Total annual cost by y	ear for review perio	od if available			
	From <u>01/01/2006</u>	To <u>12/31/2006</u>	\$358,627	☐ Breakdown attached			
	Date	Date	Total cost				
	From <u>01/01/2007</u>	To <u>12/31/2007</u>	\$360,004	☐ Breakdown attached			
	Date	Date	Total cost				
	From <u>01/01/2008</u>	To <u>12/31/2008</u>	\$300,819	☐ Breakdown attached			
	Date	Date	Total cost				
	From <u>01/01/2009</u>	To <u>12/31/2009</u>	\$483,510	☐ Breakdown attached			
	Date	Date	Total cost				
	From <u>01/01/2010</u>	To <u>12/31/2010</u>	\$441,111	☐ Breakdown attached			
	Date	Date	Total cost				
3.	Unanticipated or Un	usually High O&M Cos	sts During Review	Period			
	Describe costs and rea	asons:					
	V. ACCESS	AND INSTITUTIONAL	L CONTROLS	Applicable N/A			
A. Fo	encing						
1.	Fencing damaged	∐ Location shown	on site map	Gates secured N/A			
	Remarks:						
В. О	B. Other Access Restrictions						
1.	Signs and other secu	rity measures	☐ Location	n shown on site map N/A			
	Remarks: Signs poste	d all along perimeter of p	property.				
C. In	stitutional Controls (IC	(s)					

1. Implementation and enforcement					
Site conditions imply ICs not properly implemented	☐ Yes No ☐ N/A				
Site conditions imply ICs not being fully enforced	☐ Yes No ☐ N/A				
Type of monitoring (e.g., self-reporting, drive by) Plant manager on site	e at least three times a week.				
Frequency Three times a week					
Responsible party/agency PRP, Landowner					
Contact	mm/dd/yyyy				
Name Title	Date Phone no.				
Reporting is up-to-date	Yes No N/A				
Reports are verified by the lead agency	Yes No N/A				
Specific requirements in deed or decision documents have been met	Yes No N/A				
Violations have been reported	Yes No N/A				
Other problems or suggestions: Report attached					
	Programme American				
2. Adequacy ☐ ICs are inade	equate N/A				
Remarks:					
D. General					
	vandalism evident				
Remarks: Since the whole site is not secure, there are hunters and 4 wh mounds are secured, as is the treatment plant. When the gate is open for					
get in. The signs are stolen regularly.	or momoring, people can and do				
2. Land use changes on site N/A					
Remarks:					
3. Land use changes off site N/A					
Remarks:					
VI. GENERAL SITE CONDITIONS					
A. Roads					
1. Roads damaged ⊠ Location shown on site map ⊠ Roa	nds adequate				
Remarks:					
B. Other Site Conditions					
Remarks:					
VII. LANDFILL COVERS	□ N/A				
A. Landfill Surface					

1.	Settlement (Low sp□ts)	☐ Location shown on site☐map	Settlement not evident
	Arial extent		Depth
	Remarks:		
2.	Cracks	☐ Location shown on site map	⊠Cracking not evident
	Lengths	Widths	Depths
e.	Remarks:		
3.	Erosion	☐ Location shown on site map	Erosion not evident
	Arial extent		Depth
	Remarks: small area of eros	sion noted on OU2	
4.	Holes	☐ Location shown on site map	☐ Holes not evident
	Arial extent		Depth
	Remarks: Small mouse hold them regularly when discovered	es evident in the let down channels were vered.	e pointed out. Mr. Taylor repairs
5.	Vegetative Cover	⊠ Grass	○ Cover properly established
	No signs of stress	☐ Trees/Shrubs (indicate size and lo	cations on a diagram)
	Remarks:		
6.	Alternative Cover (armore	ed rock, concrete, etc.)	□ N/A
9	Remarks:		
7.	Bulges	☐ Location shown on site map	□ Bulges not evident
	Arial extent		Height
	Remarks:		
8.	Wet Areas/Water Damag	e	vident
	Wet areas	Location shown on site map	Arial extent
	□ Ponding	Location shown on site map	Arial extent
	Seeps	Location shown on site map	Arial extent
	Soft subgrade	Location shown on site map	Arial extent
	Remarks: Slight ponding no	oted in OU2	
9.	Slope Instability	Slides	☐ Location shown on site map
	No evidence of slope in:	stability	
	Arial extent		
50	Remarks:		
B. Beno	ches Applic	able 🔀 N/A	
		unds of earth placed across a steep land ty of surface runoff and intercept and co	

1.	Flows Bypass Bench	Location shown on site map	☐ N/A or okay
3	Remarks:		
2.	Bench Breached	Location shown on site map	☐ N/A or okay
	Remarks:		
3.	Bench Overtopped	Location shown on site map	☐ N/A or okay
80	Remarks:		
C. L	etdown Channels	☑ Applicable ☐ N/A	
8		control mats, riprap, grout bags, or gab low the runoff water collected by the b n gullies.)	
1.	Settlement (Low spots)	☐ Location shown on site map	No evidence of settlement ■
	Arial extent		Depth
	Remarks:		
2.	Material Degradation	Location shown on site map	
	Material type		Arial extent
50	Remarks:		
3.	Erosion	Location shown on site map	
	Arial extent		Depth
	Remarks:		
4.	Undercutting	Location shown on site map	No evidence of undercutting
	Arial extent		Depth
a.	Remarks:		
5.	Obstructions	Type	
	☐ Location shown on site	map Arial extent	10.
	Size		
5 1	Remarks:		
6.	Excessive Vegetative Gro	owth Type	
	No evidence of excessir	ve growth	
	☐ Vegetation in channels	does not obstruct flow	
	Location shown on site	map Arial extent	8
9	Remarks:		
D. C	over Penetrations	☑ Applicable ☐ N/A	

1.	Gas Vents	☐ Active	⊠ Passi	ve
	Properly secured/locked		☐ Routinely sampled	
	Evidence of leakage at pe	enetration	Needs Maintenance	□ N/A
	Remarks:			
2.	Gas Monitoring Probes			
	□ Properly secured/locked	□ Functioning	☐ Routinely sampled	
	Evidence of leakage at pe	netration	Needs maintenance	□ N/A
S.	Remarks:			
3.	Monitoring Wells (within sur	rface area of landfill)	
	□ Properly secured/locked	□ Functioning	Routinely sampled	
	Evidence of leakage at pe	netration	Needs Maintenance	□ N/A
	Remarks:			
4.	Extraction Wells Leachate			
	☐ Properly secured/locked	□ Functioning	☐ Routinely sampled	
	Evidence of leakage at pe	enetration	☐ Needs Maintenance	□ N/A
	Remarks:			
5.	Settlement Monuments	Located	☐ Routinely surveyed	⊠ N/A
ev	Remarks:			
E. Gas	s Collection and Treatment	☐ Applicable	⊠ N/A	
1.	Gas Treatment Facilities			
	Flaring	☐ Thermal destru	action	Collection for reuse
	Good condition	☐ Needs Mainter	nance	
G.	Remarks:			
2.	Gas Collection Wells, Manif			
	Good condition	☐ Needs Mainter	nance	
2	Remarks:		<u></u>	
3.	Gas Monitoring Facilities (e	.g., gas monitoring o	of adjacent homes or buildi	ngs)
	Good condition	☐ Needs Mainter	nance N/A	
- 1- - 1- - 1-	Remarks:		4	
F. Cov	ver Drainage Layer		e N/A	
1.	Outlet Pipes Inspected		□ N/A	
	Remarks:			
2.	Outlet Rock Inspected		□ N/A	
	Remarks:			
G. Ret	tention/Sedimentation Ponds		e N/A	

1.	Siltation	Area extent	Depth	□ N/A	
	Siltation not evid	ent			
	Remarks:				
2.	Erosion	Area extent	Depth	- 1	
	Erosion not evide	ent			
	Remarks:				
3.	Outlet Works	Functioning		⊠ N/A	
	Remarks:	_			
4.	Dam	Functioning		⊠ N/A	
	Remarks:				
H. R	etaining Walls		□ N/A		
1.	Deformations	☐ Location	shown on site map	Deformation not evident	
	Horizontal displacen	nent	Vertical d	isplacement	
	Rotational displacem	ent			
	Remarks:				
2.	Degradation		shown on site map	Degradation not evident	
	Remarks:				
I. Per	rimeter Ditches/Off-S	ite Discharge	Applicable	□ N/A	
I. Per 1.	rimeter Ditches/Off-S Siltation	ite Discharge	Applicable shown on site map	□ N/A ⊠ Siltation not evident	
	rimeter Ditches/Off-S	ite Discharge			
	rimeter Ditches/Off-S Siltation Area extent	ite Discharge	☑ Applicable	☐ Siltation not evident	
	rimeter Ditches/Off-S Siltation Area extent	ite Discharge	☑ Applicable shown on site map	☐ Siltation not evident	
1.	rimeter Ditches/Off-S Siltation Area extent Remarks:	Location Location	☑ Applicable shown on site map	Siltation not evident Depth	
1.	rimeter Ditches/Off-S Siltation Area extent Remarks: Vegetative Growth	Location Location	☑ Applicable shown on site map	Siltation not evident Depth	
1.	rimeter Ditches/Off-S Siltation Area extent Remarks: Vegetative Growth Vegetation does r	Location Location	☑ Applicable shown on site map	✓ Siltation not evidentDepth✓ N/A	
1.	rimeter Ditches/Off-S Siltation Area extent Remarks: Vegetative Growth Vegetation does not a content of the co	Location Location Location totimpede flow	☑ Applicable shown on site map	✓ Siltation not evidentDepth✓ N/A	
2.	rimeter Ditches/Off-S Siltation Area extent Remarks: Vegetative Growth Vegetation does r Area extent Remarks:	Location Location Location totimpede flow	Applicable shown on site map shown on site map	Siltation not evident Depth N/A Type	
2.	rimeter Ditches/Off-S Siltation Area extent Remarks: Vegetative Growth Vegetation does not a december of the content Area extent Remarks: Erosion	Location Location Location totimpede flow	Applicable shown on site map shown on site map	⊠ Siltation not evident Depth N/A Type ⊠ Erosion not evident	
2.	rimeter Ditches/Off-S Siltation Area extent Remarks: Vegetative Growth Vegetation does r Area extent Remarks: Erosion Area extent	Location Location Location tot impede flow Location	Applicable shown on site map shown on site map	⊠ Siltation not evident Depth N/A Type ⊠ Erosion not evident	
 2. 3. 	rimeter Ditches/Off-S Siltation Area extent Remarks: Vegetative Growth Vegetation does r Area extent Remarks: Erosion Area extent Erosion Area extent Remarks:	Location Location Location tot impede flow Location	Applicable shown on site map shown on site map	Siltation not evident Depth N/A Type Erosion not evident Depth	
 2. 3. 4. 	rimeter Ditches/Off-S Siltation Area extent Remarks: Vegetative Growth Vegetation does r Area extent Remarks: Erosion Area extent Remarks: Discharge Structure	Location Location Location Location Location Location Functioni	Applicable shown on site map shown on site map	Siltation not evident Depth N/A Type Erosion not evident Depth	
 2. 3. 4. 	rimeter Ditches/Off-S Siltation Area extent Remarks: Vegetative Growth Vegetation does r Area extent Remarks: Erosion Area extent Remarks: Discharge Structure Remarks:	Location Location Location Location Location Location Functioni	Applicable shown on site map shown on site map shown on site map	⊠ Siltation not evident Depth N/A Type Erosion not evident Depth N/A	
1. 2. 3. VIII.	rimeter Ditches/Off-S Siltation Area extent Remarks: Vegetative Growth Vegetation does range extent Remarks: Erosion Area extent Remarks: Discharge Structure Remarks: VERTICAL BARRI	Location Location Location Location Location Location Functioni	Applicable shown on site map shown on site map shown on site map Shown on site map Make the shown on site map	Siltation not evident Depth N/A Type Erosion not evident Depth N/A N/A	

2.	Performance Monito	oring Type of monitoring
	Performance not n	nonitored
	Frequency	☐ Evidence of breaching
	Head differential	
	Remarks:	
IX. C	GROUNDWATER/SUI	RFACE WATER REMEDIES Applicable N/A
A. G	roundwater Extraction	wells, Pumps, and Pipelines ⊠ Applicable □ N/A
1.	Pumps, Wellhead Plu	umbing, and Electrical
	☐ Good condition	
	Remarks:	
2.	Extraction System P	ipelines, Valves, Valve Boxes, and Other Appurtenances
		Needs Maintenance ■
	Remarks:	
3.	Spare Parts and Equ	ipment
	Readily available	☐ Good condition ☐ Requires upgrade ☐ Needs to be provided
	Remarks:	
B. Su	ırface Water Collectioi	n Structures, Pumps, and Pipelines 🔀 Applicable 🔀 N/A
1.	Collection Structures	s, Pumps, and Electrical
	Good condition	Needs Maintenance
	Remarks:	
2.	Surface Water Coll	ection System Pipelines, Valves, Valve Boxes, and Other Appurtenances
	Good condition	Needs Maintenance
	Remarks:	
3.	Spare Parts and Equ	üpment
	Readily available	☐ Good condition ☐ Requires upgrade ☐ Needs to be pr☐vided
	Remarks:	
C. Ti	reatment System	Applicable N/A

1.	Treatment Train (Check components that apply)					
	Metals removal	Oil/water separa	ation	☐ Bi□remediation		
	☑ Air stripping	⊠ Carbon adsorbe	ers			
	☐ Filters Bag Filter					
	Additive (e.g., chelation ag	Additive (e.g., chelation agent, flocculent)				
	Others					
	☐ Good condition	Needs Maintena	ance			
	Sampling ports properly m	narked and functional	Ĺ			
	⊠ Sampling/maintenance log displayed and up to date					
	Equipment properly identified					
	Quantity of groundwater treated annually					
	Quantity of surface water treated annually					
	Remarks:					
2.	Electrical Enclosures and Pa	anels (properly rated	and functional)			
	□ N/A ⊠ Go	ood condition	☐ Needs Mainter	nance		
	Remarks:					
3.	Tanks, Vaults, Storage Vess	els				
	☐ N/A ☐ Good condi	tion Proper	secondary contains	ment Needs Maintenance		
	Remarks:					
4.	Discharge Structure and Ap	purtenances				
	□ N/A ⊠ Go	ood condition	Needs Mainter	nance		
×.	Remarks:					
5.	Treatment Building(s)					
	☐ N/A ☐ Good condition (esp. roof and doorways) ☐ Needs repair					
	☐ Chemicals and equipment properly stored					
	Remarks:					
6.	Monitoring Wells (pump an	id treatment remedy)				
	Properly secured/locked		■ Routinely sa	impled Sood condition		
	All required wells located	Needs Mainter	nance	□ N/A		
=	Remarks:					
D. Mo	onitoring Data					
1.	Monitoring Data					
	☐ Is routinely submitted on t	ime		able quality		
2.	Monitoring data suggests:					
	Groundwater plume is effe	ectively contained	Contaminan	t concentrations are declining		

E. Me	onitored Natural Attenuation					
1.	Monitoring Wells (natural attenuation remedy)					
	☐ Properly secured/locked ☐ Functioning ☐ Routinely sampled ☐ Good condition					
	☐ All required wells located ☐ Needs Maintenance ☐ N/A					
	Remarks:					
t	X. OTHER REMEDIES					
If ther	e are remedies applied at the site and not covered above, attach an inspection sheet describing the physical					
	nature and condition of any facility associated with the remedy. An example would be soil vapor					
	extraction.					
	XI. OVERALL OBSERVATIONS					
A.	Implementation of the Remedy					
	Describe issues and observations relating to whether the remedy is effective and functioning as designed.					
	Begin with a brief statement of what the remedy is to accomplish (i.e., to contain contaminant plume,					
	minimize infiltration and gas emission, etc.).					
	For both OU1 and OU2, the RAOs are to reduce risk associated with direct exposure of humans and fauna					
	to landfill waste and contaminated on-site surface soils, contaminated on-site surface waters and ground					
	waters, contaminated on-site stream sediments, and contaminated on-site leachate and leachate sediments.					
	The remedy is effective and functioning as intended by the decision documents for the Site.					
В.	Adequacy of O&M					
8	Describe issues and observations related to the implementation and scope of O&M procedures. In					
	particular, discuss their relationship to the current and long-term protectiveness of the remedy.					
	No issues or observations related to the implementation and scope of O&M activities were observed or					
	noted. The Site is regularly inspected and maintained in accordance with the O&M Plan.					
C.	Early Indicators of Potential Remedy Problems					
	Describe issues and observations such as unexpected changes in the cost or scope of O&M or a high					
	frequency of unscheduled repairs that suggest that the protectiveness of the remedy may be compromised					
	in the future.					
E.	Discovery of drums near OU1; Ponding at OU2.					
D.	Opportunities for Optimization					
4.0	Describe possible opportunities for optimization in monitoring tasks or the operation of the remedy.					
	None.					

Appendix E: Photographs from Site Inspection Visit

Warning signage at main access gate to OU2

Main access gate to OU2

OU2 landfill mound

OU1 fence

OU1 deep well gas vent

Settlement marker for OU1

Looking north on top of OU1

Logging roads and erosion near retention pond

Drum remains found north of the OU1 landfill

Letdown channel at OU2

Extraction well at OU2

Small area of erosion on OU2

Carbon activated vessel

Package metals removal station

Filter press dewatering

Appendix F: 2009 ESD Institutional Control Boundaries REVISED ESD BOUNDARY (2009) LEGEND Linebach Funkhouser, Inc.

Appendix G: Ground Water Monitoring Trend Graphs

Figure 11 MW-11 Volatile Organic Compounds 2000-2010 Smith's Farm - Shepherdsville, KY

Figure 12 MW-12 Volatile Organic Compounds 2000-2010 Smith's Farm - Shepherdsville, KY

Figure 13 MW-15 Volatile Organic Compounds 2000-2010 Smith's Farm - Shepherdsville, KY

Figure 14 MW-30 Volatile Organic Compounds 2000-2010 Smith's Farm - Shepherdsville, KY

Figure 15 MW-4 Semi-Volatile Organic Compounds 2000-2010 Smith's Farm - Shepherdsville, KY

Figure 16 MW-11 Semi-Volatile Organic Compounds 2000-2010 Smith's Farm - Shepherdsville, KY

Figure 17
MW-15
Semi-Volatile Organic Compounds
2000-2010
Smith's Farm - Shepherdsville, KY

Figure 18
MW-25
Semi-Volatile Organic Compounds
2000-2010
Smith's Farm - Shepherdsville, KY

Figure 19 MW-30 Semi-Volatile Organic Compounds 2000-2010 Smith's Farm - Shepherdsville, KY

Figure 20 MW-3 Total Metals Over The MCL 2000-2010 Smith's Farm - Shepherdsville, KY

Figure 21
MW-4
Total Metals Over The MCL
2000-2010
Smith's Farm - Shepherdsville, KY

Figure 22 MW-5 Total Metals Over The MCL 2000-2010 Smith's Farm - Shepherdsville, KY

Figure 23 MW-6 Total Metals Over The MCL 2000-2010 Smith's Farm - Shepherdsville, KY

Figure 24
MW-7
Total Metals Over The MCL
2000-2010
Smith's Farm - Shepherdsville, KY

Figure 25 MW-8 Total Metals Over The MCL 2000-2010 Smith's Farm - Shepherdsville, KY

Figure 26 MW-11 Total Metals Over The MCL 2000-2010 Smith's Farm - Shepherdsville, KY

Figure 27 MW-13 Total Metals Over The MCL 2000-2010 Smith's Farm - Shepherdsville, KY

Figure 28 MW-14 Total Metals Over The MCL 2000-2010 Smith's Farm - Shepherdsville, KY

Figure 29 MW-15 Total Metals Over The MCL 2000-2010 Smith's Farm - Shepherdsville, KY

Figure 30 MW-25 Total Metals Over The MCL 2000-2010 Smith's Farm - Shepherdsville, KY

Figure 31 MW-26 Total Metals Over The MCL 2000-2010 Smith's Farm - Shepherdsville, KY

Figure 32 MW-27 Total Metals Over The MCL 2000-2010

Smith's Farm - Sherpherdsville, KY

Figure 33 MW-28 Total Metals Over The MCL 2000-2010 Smith's Farm - Shepherdsville, KY

Figure 34 MW-29 Total Metals Over The MCL 2000-2010 Smith's Farm - Shepherdsville, KY

Figure 35 MW-30 Total Metals Over The MCL 2000-2010 Smith's Farm - Shepherdsville, KY

Appendix H: Effluent Sampling Results

Table 4: Treatment Plant Quarterly Effluent Sampling Results

Sample Location: Sample Date:	ROD	KPDES	Effluent 3/25/2009	Effluent 6/24/2009	Effluent 9/21/2009	Effluent 12/21/2009	Effluent 3/29/2010	Effluent 6/23/2010	Effluent 9/29/2010	Effluent 12/17/2010	Effluent 1/19/2011
	Requirements		Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample
IELD PARAMETER:											
H, pH units											
H	100	(**)	8.2 J	7.6 J	8.0 J	7.7 J	8.1	7.6	6.7	7.5 J	NA
urbidity, NTU urbidity		(<u>44</u>)	0.69	0.28 ЈВ	0.50	0.97 J	0.47	0.75	1.5	0.44 JB	NA
rounty		5 <u>==</u> 0	0.09	0.28 JB	0.50	0.97 3	0.47	0.73	1.3	0.44 JB	NA
XED BASE LABORATORY ANALYSIS:											
nmonia Nitrogen, mg/L											
trogen, ammonia (As N)	188	8223	< 0.6	< 0.6	<0.6	0.24 JQ	0.24 JQ	< 0.6	0.62	<0.6	NA
nions, mg/L											
trogen, nitrate	20	18	1.8	0.52	1.0	0.60 J	0.86	0.84	0.64	0.66	NA
trogen, nitrite	**		< 0.5	< 0.5	<0.5	< 0.5	<10	< 0.5	< 0.5	< 0.5	NA
- L											
ochemical Oxygen Demand (BOD), mg/L ochemical Oxygen Demand (BOD)		5 55 6	< 4.6	< 0.84	< 1.4	< 1.9	<4.3	<2	<2.2	<2.1	NA
chemical oxygen beniala (bob)			- 4.0	0.04		1.5		102	~2.2	-2.1	1421
emical Oxygen Demand (COD), mg/L											
emical Oxygen Demand (COD)	===	1 550 8	33.5 JQ	50.0	46.6 JQ	45.8 JQ	42.8 JQ	47.6 JQ	57.8	37.3 JQ	NA
anide, Total, mg/L											
anide		0.005	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	NA
xavalent Chromium, Total, mg/L											
exavalent Chromium	1	(1	0.0010 JQ	NA	NA	NA	< 0.003	0.0013 JQ	0.00083 JQ	0.0018 JQ	NA
ercury, Total, ng/L											
ercury	144	12	4.96 JQ	2.45 JQ	3.95 JQ	10.5	6.93 JQ	11.2 JQ	8.7 JQ	13.1	8.54
otale Total me/I											
etals, Total, mg/L ntimony	0.062	1.6	0.00079 JQ	0.00060 JQ	0.00075 JQ	< 0.001	0.00042 JQ	0.00055 JQ	0.00067 JQ	0.00056 JQ	NA
senic	0.011	0.05	<0.002	< 0.002	<0.002	< 0.002	< 0.002	< 0.002	<0.002	<0.002	NA
rium	0.231	U.05	0.0612	0.0549	0.0524	0.0438	0.0576	0.0634	0.0787	0.0368	NA
ryllium	0.251	0.0053	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	NA
dmium	100	0.0033	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	NA
lcium	5 <u>200</u>	0.0011	131	128	131	121	146	142	160	80.2	NA
romium	0.011	0.011	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	NA NA
	0.011	0.011	0.0053 JQ	<0.015	0.0038 JQ	0.0038 JQ	0.0036 JQ	0.0037 JQ	<0.013	0.003 JQ	NA NA
pper n		0.012		<0.01	<0.2	<0.2	<0.2		<0.01	100	NA NA
	100	0.0032	0.0933 JQ	<0.2	<0.2	<0.2	<0.2	0.0557 JQ <0.001	<0.20	0.0808 JQ	NA NA
ad	1970		0.00020 JQ							0.0001 JQ	
gnesium	L op	100001	123	118	124	111	143	133	146	63.3	NA
inganese	100	0.16	1.18	0.42	0.377	0.0678	0.313	0.179	0.237	0.122	NA
ckel	100	0.16	0.0129	0.011	0.0126	0.0152	0.0126	0.0123	0.0119	0.0079 JQ	NA
lenium	E	0.005	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	0.00066 JQ	0.00037 JQ	NA
lver	-	0.00012	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.000095 JQ	NA

Table 4: Treatment Plant Quarterly Effluent Sampling Results

Sa	ample Location: Sample Date: Sample Type:	ROD Requirements	KPDES Requirements	Effluent 3/25/2009 Sample	Effluent 6/24/2009 Sample	Effluent 9/21/2009 Sample	Effluent 12/21/2009 Sample	Effluent 3/29/2010 Sample	Effluent 6/23/2010 Sample	Effluent 9/29/2010 Sample	Effluent 12/17/2010 Sample	Effluent 1/19/2011 Sample
Thallium		0.011	0.04	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	NA
Zinc		0.011 	0.11	0.0123 JQ	<0.02	<0.02	0.0152 JQ	<0.02	<0.02	0.0172 JQ	<0.02	NA
Phenol, mg/L												
Phenol Phenol				<0.04	< 0.04	<0.04	<0.04	<0.04	< 0.04	< 0.04	<0.04	NA
Phosphorus, mg/L												
Ortho Phosphorus		584	-	NA	0.26	0.25	0.19 J	0.18	0.23	0.25	0.22	NA
Phosphorus, Total		124	12 C	< 0.1	0.084 JQ	0.19	0.17 J	0.14	0.11	0.27	0.15	NA
Semi-Volatile Organic Compou	nds, ug/L											
1,2,4-Trichlorobenzene		25	-	< 5	< 5	< 5	< 5	<5	<5	<5	<5	NA
1,2-Dichlorobenzene		17.7	5	< 5	< 5	< 5	< 5	<5	<5	<5	<5	NA
1,3-Dichlorobenzene		170	-	< 5	< 5	< 5	< 5	<5	<5	<5	<5	NA
1,4-Dichlorobenzene		170	5	< 5	< 5	< 5	< 5	<5	<5	<5	<5	NA
2,2'-oxybis(2-Chloropropane)		1 777	3 511 3	NA	< 5	< 5	< 5	<5	<5	<5	<5	NA
2,4,5-Trichlorophenol		1 777	1 5.11 .2	< 5	< 5	< 5	< 5	<5	<5	<5	<5	NA
2,4,6-Trichlorophenol		2 55	3 511 3	< 5	< 5	< 5	< 5	<5	<5	<5	<5	NA
2,4-Dichlorophenol		-	g ele s:	< 5	< 5	< 5	< 5	<5	<5	<5	<5	NA
2,4-Dimethylphenol		4570	5	< 5	< 5	< 5	< 5	<5	<5	<5	<5	NA
2,4-Dinitrophenol		-	and the same of th	< 29	< 29	< 28	< 28	<29	<29	<29	<28	NA
2,4-Dinitrotoluene		:==	S ≥ (3)	< 5	< 5	< 5	< 5	<5	<5	<5	<5	NA
2,6-Dichlorophenol		:==	3 20 3	< 5	< 5	< 5	< 5	<5	<5	<5	<5	NA
2,6-Dinitrotoluene		:= -	: 200 3	< 5	< 5	< 5	< 5	<5	<5	<5	<5	NA
2-Chloronaphthalene		144		< 5	< 5	< 5	< 5	<5	<5	<5	<5	NA
2-Chlorophenol		23	-	< 5	< 5	< 5	< 5	<5	<5	<5	<5	NA
2-Methylnaphthalene		\$7400 1 44 00	25 44 2	< 5	< 5	< 5	< 5	<5	<5	<5	<5	NA
2-Methylphenol (o-Cresol)		3223	(<u>122</u>)	< 5	< 5	< 5	< 5	<5	<5	<5	<5	NA
2-Nitroaniline		3223	(22)	< 5	< 5	< 5	< 5	<5	<5	<5	<5	NA
2-Nitrophenol		3223	10 <u>000</u> 0	< 5	< 5	< 5	< 5	<5	<5	<5	<5	NA
3,3'-Dichlorobenzidine		9 <u>20</u> V	000en	< 5	< 5	< 5	< 5	<5	<5	<5	<5	NA
3-Nitroaniline		9 <u>20</u> 77	670041	< 5	< 5	< 5	< 5	<5	<5	<5	<5	NA
4,6-Dinitro-2-Methylphenol		9 <u>20</u> V	62043	< 14	< 14	< 14	< 14	<14	<14	<14	<14	NA
4-Bromophenyl phenyl ether		247	-	< 5	< 5	< 5	< 5	<5	<5	<5	<5	NA
4-Chloro-3-Methylphenol		(a -)	(44)	< 5	< 5	< 5	< 5	<5	<5	<5	<5	NA
4-Chloroaniline				< 5	< 5	< 5	< 5 UJ	<5	<5	<5	<5	NA
4-Chlorophenyl phenyl ether				< 5	< 5	< 5	< 5	<5	<5	<5	<5	NA
4-Methylphenol (p-Cresol)			(1992) (1992)	< 5	< 5	< 5	< 5	<5	<5	<5	<5	NA
4-Nitroaniline		6907/.	(1992) (1 4 4)	< 5	< 5	< 5	< 5	<5	<5	<5	<5	NA
4-Nitrophenol		00000 N amo 0	9550	< 10	< 10	< 9	< 9	<10	<10	<10	<9	NA
Acenaphthene		2.000 2.000		< 5	< 5	< 5	< 5	<5	<5	<5	<5	NA
Acenaphthylene		2.7702 2.7702	2000	< 5	< 5	< 5	< 5	<5	<5	<5	<5	NA
alpha-Terpineol		0.000 0.000	2072 19 4 2	< 5	< 5	< 5	< 5	<5	<5	<5	<5	NA
Aniline		07000		< 5	< 5	< 5	< 5 UJ	<5	<5	<5	<5	NA
Anthracene				< 5	< 5	< 5	< 5	<5	<5	<5	<5	NA NA
			XX.***********************************					~ 3				INC

Table 4: Treatment Plant Quarterly Effluent Sampling Results

S	ample Location:			Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent
	Sample Date:	ROD	KPDES	3/25/2009	6/24/2009	9/21/2009	12/21/2009	3/29/2010	6/23/2010	9/29/2010	12/17/2010	1/19/2011
	Sample Type:	Requirements	Requirements	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample
Benzo(a)anthracene		144	(<u>44</u>)	< 5	< 5	< 5	< 5	<5	<5	<5	<5	NA
Benzo(a)pyrene		144	144	< 5	< 5	< 5	< 5	<5	<5	<5	<5	NA
Benzo(b)fluoranthene		1 44	(<u>++</u>)	< 5	< 5	< 5	< 5	<5	<5	<5	<5	NA
Benzo(g,h,i)perylene		122	8 22 8	< 5	< 5	< 5	< 5	<5	<5	<5	<5	NA
Benzo(k)fluoranthene		122		< 5	< 5	< 5	< 5	<5	<5	<5	<5	NA
Benzoic acid		122	-	< 29	<29 R	<28 R	< 28	<29	<29	<29	<28	NA
Benzyl Alcohol		124	42	< 5	< 5	< 5	< 5	<5	<5	<5	<5	NA
bis(2-Chloroethoxy)methane		1646		< 5	< 5	< 5	< 5	<5	<5	<5	<5	NA
bis(2-Chloroethyl)ether		1024		< 5	< 5	< 5	< 5	<5	<5	<5	<5	NA
bis(2-Ethylhexyl)phthalate		-		< 5	< 5	< 5	< 5	<5	<5	<5	<5	NA
Butyl benzyl phthalate		-	5	< 5	< 5	< 5	< 5	<5	<5	<5	<5	NA
Carbazole				< 5	< 5	< 5	< 5	<5	<5	<5	<5	NA
Chrysene		-		< 5	< 5	< 5	< 5	<5	<5	<5	<5	NA
Dibenzo(a,h)anthracene				< 5	< 5	< 5	< 5	<5	<5	<5	<5	NA
Dibenzofuran				< 5	< 5	< 5	< 5	<5	<5	<5	<5	NA
Diethyl Phthalate		2 -1-	5 55 2	< 5	< 5	< 5	< 5	<5	<5	<5	<5	NA
Dimethyl phthalate		2	5 55 2	< 5	< 5	< 5	< 5	<5	<5	<5	<5	NA
Di-n-butyl phthalate		2	A==2	< 5	< 5	< 5	< 5	<5	<5	<5	<5	NA
Di-n-octyl phthalate				< 5	< 5	< 5	< 5	<5	<5	<5	<5	NA
Fluoranthene				< 5	< 5	< 5	< 5	<5	<5	<5	<5	NA
Fluorene			(***)	< 5	< 5	< 5	< 5	<5	<5	<5	<5	NA
Hexachlorobenzene			1922	< 5	< 5	< 5	< 5	<5	<5	<5	<5	NA
Hexachlorobutadiene		t ele	S==3	< 5	< 5	< 5	< 5	<5	<5	<5	<5	NA
Hexachlorocyclopentadiene		t ele	S==3	< 14	< 14	< 14	< 14	<14	<14	<14	<14	NA
Hexachloroethane		122	(<u>-11</u>)	< 5	< 5	< 5	< 5	<5	<5	<5	<5	NA
Indeno(1,2,3-cd)pyrene		1000 1000	922	< 5	< 5	< 5	< 5	<5	<5	<5	<5	NA
Isophorone		(44)	222	< 5	< 5	< 5	< 5	<5	<5	<5	<5	NA
Naphthalene		S <u>244</u> 33		< 5	< 5	< 5	< 5	<5	<5	<5	<5	NA
Nitrobenzene		250		< 5	< 5	< 5	< 5	<5	<5	<5	<5	NA
N-Nitrosodimethylamine				< 5	< 5	< 5	< 5	<5	<5	<5	<5	NA
N-Nitrosodi-n-propylamine		11	92/40	< 5	< 5	< 5	< 5	<5	<5	<5	<5	NA
N-Nitrosodiphenylamine			0220	< 5	< 5	< 5	< 5	<5	<5	<5	<5	NA
Pentachlorophenol		1221	0220	< 14	< 14	< 14	< 14	<14	<14	<14	<14	NA
Phenanthrene				< 5	< 5	< 5	< 5	<5	<5	<5	<5	NA
Phenol		365000	5	< 5	< 5	< 5	< 5	<5	<5	<5	<5	NA
Pyrene			-	< 5	< 5	< 5	< 5	<5	<5	<5	<5	NA
Pyridine				< 5	< 5	< 5	< 5	<5	<5	<5	<5	NA
ryndine		9 27 77.	1520	533	~ 3	- 5	3.5	-5	~	-53	50	INA
Total Dissolved Solids (TDS), n	ng/L							1010		* ***		***
Total Dissolved Solids		S AR O	2 000 2	1620	1550	1680	1550	1840	1700	1610	908	NA
Total Kjeldahl Nitrogen, mg/L												
Total Kjeldahl Nitrogen		(100)	11 44	1.1	0.80 JQ	< 1.0	0.90 JQ	0.68 JQ	0.85 JQ	1.5	0.58 JQ	NA
Total Organic Carbon (TOC),	mg/L											
Total Organic Carbon (TOC)		(44)	(**)	13.6	12.9	14.2	15.3	13.2	14.6	17.5	9.1	NA

Table 4: Treatment Plant Quarterly Effluent Sampling Results

The state of the s	ple Location:			Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent
:	Sample Date:	ROD	KPDES	3/25/2009	6/24/2009	9/21/2009	12/21/2009	3/29/2010	6/23/2010	9/29/2010	12/17/2010	1/19/2011
	Sample Type:	Requirements	Requirements	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample
Total Suspended Solids (TSS), mg	/L											
Total Suspended Solids		(He	S##5	<12	<12	<12	<12	<12	<12	<12	3.2 JQ	NA
Volatile Organic Compounds, ug/l	L											
1,1,1,2-Tetrachloroethane		822		< 5	< 5 UJ	< 5	< 5	<5	<5	<5	<5	NA
1,1,1-Trichloroethane		i i i i i i i i i i i i i i i i i i i	# # ##################################	< 5	< 5 UJ	< 5	< 5	<5	<5	<5	<5	NA
1,1,2,2-Tetrachloroethane		SEE.	# # #	< 5	< 5 UJ	< 5	< 5	<5	<5	<5	<5	NA
1,1,2-Trichloroethane		5 <u>26</u>	5	< 5	< 5 UJ	< 5	< 5	<5	<5	<5	<5	NA
1,1-Dichloroethane		*	5	< 5	< 5 UJ	< 5	< 5	<5	<5	<5	<5	NA
1,1-Dichloroethene		=	5	< 5	< 5 UJ	< 5	< 5	<5	<5	<5	<5	NA
1,1-Dichloropropene		=		< 5	< 5 UJ	< 5	< 5	<5	<5	<5	<5	NA
1,2,3-Trichlorobenzene		100	-	< 5	< 5 UJ	< 5	< 5	<5	<5	<5	<5	NA
1,2,3-Trichloropropane		177		< 5	< 5 UJ	< 5	< 5	<5	<5	<5	<5	NA
1,2,4-Trichlorobenzene		100		< 5	< 5 UJ	< 5	< 5	<5	<5	<5	<5	NA
1,2,4-Trimethylbenzene		2 55	(5.5 .2	< 5	< 5 UJ	< 5	< 5	<5	<5	<5	<5	NA
1,2-Dibromo-3-Chloropropane		2 5.5	1 5.5 .2	< 5	< 5 UJ	< 5	< 5	<5	<5	<5	<5	NA
1,2-Dibromoethane (Ethylene dibror	nide)	275	9 5.5 2	< 5	< 5 UJ	< 5	< 5	<5	<5	<5	<5	NA
1,2-Dichlorobenzene	18		5	< 5	< 5 UJ	< 5	< 5	<5	<5	<5	<5	NA
1,2-Dichloroethane			5	< 5	< 5 UJ	< 5	< 5	<5	<5	<5	<5	NA
1,2-Dichloropropane			5	< 5	< 5 UJ	< 5	< 5	<5	<5	<5	<5	NA
1,3,5-Trimethylbenzene		:==		< 5	< 5 UJ	< 5	< 5	<5	<5	<5	<5	NA
1,3-Dichlorobenzene			S 3	< 5	< 5 UJ	< 5	< 5	<5	<5	<5	<5	NA
1,3-Dichloropropane			S H- 3	< 5	< 5 UJ	< 5	< 5	<5	<5	<5	<5	NA
1,4-Dichlorobenzene			5	< 5	< 5 UJ	< 5	< 5	<5	<5	<5	<5	NA
2,2-Dichloropropane			3	< 5	< 5 UJ	< 5	< 5	<5	<5	<5	<5	NA
2-Butanone (Methyl ethyl ketone)				< 10	< 10 UJ	< 10	< 10	<10	<10	<10	<10	NA
						< 10	< 10 UJ	<10	<10	<10	<10	NA
2-Chloroethyl vinyl ether			(<u>111</u>)	< 10 UJ		< 5	< 5	<5	<5	<5	<5	NA NA
2-Chlorotoluene		3 <u>22</u> 3	(<u>111</u>)	< 5		< 10	< 10	<10		<10	<10	
2-Hexanone		3 <u>22</u> 3	9 <u>2-2</u> 3	< 10			< 5		<10 <5			NA
4-Chlorotoluene		-	6747411	< 5	< 5 UJ	< 5	< 5	<5		<5	<5 <5	NA
4-Isopropyltoluene (Cymene)		-	674 <u>74</u> 73	< 5	< 5 UJ	< 5		<5	<5	<5	12.00	NA
Acetone		-	67 <u>474</u> 63	< 20	< 20 UJ	< 20	< 20	<20	<20	<20	<20	NA
Acrolein				< 50	< 50 UJ	< 50	< 50	<50	<50	<50	<50	NA
Acrylonitrile				< 50	< 50 UJ	< 50	< 50	<50	<50	<50	<50	NA
Benzene			5	< 5	< 5 UJ	< 5	< 5	<5	<5	<5	<5	NA
Bromobenzene		6 5.5 //	0.750	< 5	< 5 UJ	< 5	< 5	<5	<5	<5	<5	NA
Bromodichloromethane		6 55 6	0.750	< 5	< 5 UJ	< 5	< 5	<5	<5	<5	<5	NA
Bromoform (Tribromomethane)		(55)	(12)	< 5	< 5 UJ	< 5	1 JQ	<5	<5	<5	<5	NA
Bromomethane (Methyl bromide)		3 7.7 8	2177	< 5	< 5 UJ	< 5	< 5	<5	<5	<5	<5	NA
Carbon disulfide		1 111 21	2000	< 5	< 5 UJ	< 5	< 5	<5	<5	<5	<5	NA
Carbon tetrachloride		3 3.5 3	2000	< 5	< 5 UJ	< 5	< 5	<5	<5	<5	<5	NA
Chlorobenzene		(** C)	194	< 5	< 5 UJ	< 5	< 5	<5	<5	<5	<5	NA
Chlorodibromomethane (Dibromoch	nloromethane)	(**)	3 41	< 5	< 5 UJ	< 5	< 5	<5	<5	<5	<5	NA
Chloroethane		(** 0)	1. 44	< 5	< 5 UJ	< 5	< 5	<5	<5	<5	<5	NA
Chloroform		(48)	(MB)	< 5	< 5 UJ	< 5	< 5	<5	<5	<5	<5	NA

Table 4: Treatment Plant Quarterly Effluent Sampling Results

Sample Location: Sample Date:	ROD Pequirements	KPDES Requirements	Effluent 3/25/2009 Sample	Effluent 6/24/2009 Sample	Effluent 9/21/2009 Sample	Effluent 12/21/2009 Sample	Effluent 3/29/2010 Sample	Effluent 6/23/2010 Sample	Effluent 9/29/2010 Sample	Effluent 12/17/2010 Sample	Effluent 1/19/2011 Sample
Sample Type.	requirements	requirements	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample
Chloromethane (Methyl chloride)			< 5	< 5 UJ	< 5	< 5	<5	<5	<5	<5	NA
cis-1,2-Dichloroethene	1	(**)	< 5	< 5 UJ	< 5	< 5	<5	<5	<5	<5	NA
cis-1,3-Dichloropropene	1	H+1	< 5	< 5 UJ	< 5	< 5	<5	<5	<5	<5	NA
Dibromomethane (Methylene bromide)	144	SHEET.	< 5	< 5 UJ	< 5	< 5	<5	<5	<5	<5	NA
Dichlorodifluoromethane	i n a	THE STATE OF THE S	< 5	< 5 UJ	< 5	< 5	<5	<5	<5	<5	NA
Ethylbenzene	344	5	< 5	< 5 UJ	< 5	< 5	<5	<5	<5	<5	NA
Hexachlorobutadiene	826	1920	< 5	< 5 UJ	< 5	< 5	<5	<5	<5	<5	NA
Iodomethane	522	722	< 5	< 5 UJ	< 5	< 5	<5	<5	<5	<5	NA
Isopropylbenzene (Cumene)	922	722	< 5	< 5 UJ	< 5	< 5	<5	<5	<5	<5	NA
m,p-Xylenes	186	29 212 38	< 5	< 5 UJ	< 5	< 5	<5	<5	<5	<5	NA
Methyl isobutyl ketone (4-Methyl-2-pentanone)	188	500 6 5	< 10	< 10 UJ	< 10	< 10	<10	<10	<10	<10	NA
Methylene chloride (Dichloromethane)	5870	5	< 5	< 5 UJ	< 5	< 5	<5	<5	<5	<5	NA
Naphthalene			< 5	< 5 UJ	< 5	< 5	<5	<5	<5	<5	NA
n-Butylbenzene	20		< 5	< 5 UJ	< 5	< 5	<5	<5	<5	<5	NA
n-Propylbenzene	20	(40)	< 5	< 5 UJ	< 5	< 5	<5	<5	<5	<5	NA
o-Xylene	100	(212)	< 5	< 5 UJ	< 5	< 5	<5	<5	<5	<5	NA
sec-Butylbenzene (2-Phenylbutane)	iat	\$2 717 51	< 5	< 5 UJ	< 5	< 5	<5	<5	<5	<5	NA
Styrene	100	\$2 5 75\$	< 5	< 5 UJ	< 5	< 5	<5	<5	<5	<5	NA
tert-Butylbenzene	8 11.	9 ,515 8	< 5	<5 UJ	< 5	< 5	<5	<5	<5	<5	NA
Tetrachloroethene (PCE)	: 	5	< 5	< 5 UJ	< 5	< 5	<5	<5	<5	<5	NA
Toluene	: 	5	< 5	< 5 UJ	< 5	< 5	<5	<5	<5	<5	NA
trans-1,2-Dichloroethene	:==	-	< 5	< 5 UJ	< 5	< 5	<5	<5	<5	<5	NA
trans-1,3-Dichloropropene	: 	SHE:	< 5	< 5 UJ	< 5	< 5	<5	<5	<5	<5	NA
trans-1,4-Dichlorobutene	. 		< 50	< 50 UJ	< 50	< 50	<50	<50	<50	< 50	NA
Trichloroethene (TCE)	i	5	< 5	< 5 UJ	< 5	< 5	<5	<5	<5	<5	NA
Trichlorofluoromethane	i		< 5	< 5 UJ	< 5	< 5	<5	<5	<5	<5	NA
Vinyl Acetate		(**)	< 10	< 10 UJ	< 10	< 10	<10	<10	<10	<10	NA
Vinyl Chloride		(He):	< 5	< 5 UJ	< 5	< 5	<5	<5	<5	<5	NA

Notes:

Analytical methods vary per sampling event and are listed below:

pH - EPA 150.1, SM 4500HB

Temperature - EPA 170.1, SM 2550B

Turbidity - EPA 180.1

Ammonia Nitrogen - EPA 350.1, SM 4500NH3 B/CM

Anions - EPA 300.0, EPA 353.3, EPA 354.1

Biological Oxygen Demand (BOD) - EPA 405.1, SM 5210B

Chemical Oxygen Demand (COD) - EPA 410.1, EPA 410.4, SM 5220D

Cyanide - EPA 335.4

Mercury - EPA 200.7, EPA 245.1, EPA 1631 Low Level

Phenol - EPA 420.4

Phosphorus - EPA 300.0, EPA 365.1, SM4500P

Semi-Volatile Organic Compounds - EPA 625, SW846 8270C

Total Dissolved Solids (TDS) - EPA 160.1, 1-1750-85, SM2540C

Total Kjeldahl Nitrogen - EPA 351.2, EPA 351.3, SM 4500

Total Metals - EPA 200.7, EPA 200.8

Table 4: Treatment Plant Quarterly Effluent Sampling Results

Sample Location:			Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent
Sample Date:	ROD	KPDES	3/25/2009	6/24/2009	9/21/2009	12/21/2009	3/29/2010	6/23/2010	9/29/2010	12/17/2010	1/19/2011
Sample Type:	Requirements	Requirements	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample

Total Organic Carbon (TOC) - SM 5310B, SM 5310C, SW846 9060
Total Suspended Solids (TSS) - EPA 160.2, I-3765-85, SM2540D
Volatile Organic Compounds - EPA 624, SW846 8260B
-- = Regulatory requirement not established for this constituent
BOLD = Exceeded regulatory requirement

Data Flag Definitions:

J = Estimated value based on QC data

JB = Estimated value due to blank contamination

JQ = Estimated value; reported between the CRDL and MDL

NA = Not Analyzed

R = The data are rejected due to deficiences in meeting QC criteria and nay not be used for decision making

UJ = Undetected; the reported detection limit is approximate

< = Less than the Reporting Limit

Prepared by/Date: RMB 3/2/11 Checked by/Date: CLC 3/2/11

Table 4: Treatment Plant Quarterly Effluent Sampling Results

							10*1041N N NO NO			5	
Sample Loca	dion;		Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent
Sample I		KPDES	3/3/2008	6/30/2008	6/30/2008	9/29/2008	12/17/2008	3/25/2009	6/24/2009	9/21/2009	12/21/2009
Sample T	ype: Requirements	Requirements	Sample	Sample	Duplicate	Sample	Sample	Sample	Sample	Sample	Sample
FIXED BASE LABORATORY ANALYS	IS:										
pH, pH units											
pH		77.	7 7	NA	NA	NA	7,9	82 J	7.6 J	80 3	7.7 J
Turbidity, NTU											
Turbidity		<u>\$120</u>	0.43	NA	NA	NA	0.44 JH	0.69	0.28 JB	0.50	0.97 J
F											
Ammonia Nitrogen, mg/L Nitrogen, ammonia (As N)		***	0.86	NA	NA	NA	0.27 JQ	< 0.60	~ 0.60	< 0.60	0.24 JQ
Surogen, animonia (AS IS)		**	17,011	1874	INA	1824	17.27 319	C (1)()	× 0.60	C 17 60	0.24 52
Anions, mg/L											
Nitrogen, intrate		**	0.82	NA	NA	NA	μ_{N}	1.8	0.52	1.0	0.00 1
Nitrogen, nitrite	122	192 0	~ 0.50	NA	NA	NA	N.A.	< 0.50	< 0.50	< 0.50	< 0.50
BY L. LEWIS D. L. BODG.											
Biochemical Oxygen Demand (BOD), mg/ Biochemical Oxygen Demand (BOD)	<u></u>	ww.	< 2.4	< 3.6	< 3.5	< 3.6	< 3.6	< 4,6	< 0.84	< 1.4	< 1.9
Biochemical Oxygen Demand (BOD)		##.	S _ 4	× ,1,0	~ 11	<.5.0	≥ 5.0	× +, n	~ 0,54	:< 1,4	~ 1.9
Chemical Oxygen Demand (COD), mg/L											
Chemical Oxygen Demand (COD)	¥-		< 50 0	48 7 JQ	48 7 JQ	64.6	60.1	33.5 JQ	50.0	46,6 JQ	45.8 JQ
18.74											
Cvanide, Total, mg/L	48										
Cyanide		0.005	< 0.010	< 0.010	< 0 010	< 0 010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Hexavalent Chromium, Total, mg/L											
Hexavalent Chromium		**	< 0.0030	NA	NA	NA	NA	0.0010 JQ	NA	NA	NA
							80		1.**X.**		, ,
Mercury, Total, ng/L											
Mercury		12	3.96	2 66 JQ	2.96 JQ	7.60	1.37	4.96 JQ	2.45 JQ	3.95 JQ	10.5
Metals, Total, mg/L											
Antimony	0.062	1.6	< 0.0010	0.00063 JO	O.00061 JQ	0 00087 JO	0.00073 JQ	0.00079 JO	0.00060 JQ	0.00075 JO	< 0.0010
Arsenic	0.011	0.05	< 0.0020	0.0019 JQ	0,0023	< 0.0020	0.00013 3Q	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Baraun	0.231		0.0567	0.0464	0.0553	0.0624	0.0558	0.0612	0.0549	0.0524	0.0438
Beryllium	5.2.1	0.0053	< 0.00020	0.00026 JQ	0.00029 JQ	< 0.00050	< 0.00050	< 0 00050	< 0.00050	< 0.00050	< 0.00050
Cadmium		0.0011	< 0.00025	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050
Calcium	.553 144	**	137	115	127	142	124	131	128	131	121
Chromian	0.011	0.011	< 0.0150	0.0048 JQ	0,0044 JQ	0.0047 JO	0,0040 JQ	< 0.0150	< 0.0150	< 0.0150	< 0.0150
Copper		0.012	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	0.0053 JQ	< 0.0100	0.0038 JQ	0.0038 JQ
Iron	**	1	< 0.200	< 0.200	< 0.200	0.116 JQ	0.0605 JQ	0.0933 JQ	< 0.200	< 0.200	< 0.200
end ·		0.0032	< 0.0010	0.00010 JO	0.000086 JO	O.00016 JO	O.00005 JQ	0,00020 JO	< 0.0010	< 0.0010	< 0.0010
Vagnesium	-	W/0000000	126	111	120	143	117	123	118	124	111
Manganese	**	***	0.410	0 287 J	0.680 J	0.968	1.14	1.18	0.420	0.377	0.0678
Nickel	33: 22	0 16	0.0151	0.0191	0.0227	0.0304	0 0243	0.0129	0.0110	0.0126	0.0152
Selenium		0.005	0.0031	0.0061 JQ	0.0064 JQ	0.00031 JQ	0,00033 JQ	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Silver		0.00012	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Thallum	0.011	0.04	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050
Trantum	110.01	0.04	~ 0.00030	~ 0 00030	~ 0.000.50	~ 0.0000	~ 0,000,50	~ 0.00030	~ 0.00030	~ 0.00030	0.00030

Table 4: Treatment Plant Quarterly Effluent Sampling Results

S	umple Location. Sample Date Sample Type	ROD Requirements	KPDES Requirements	Effluent 3/3/2008 Sample	Efflueni 6/30/2008 Sample	Effluent 6/30/2008 Duplicate	Effluent 9/29/2008 Sample	Effluent 12/17/2008 Sample	Effluent 3/25/2009 Sample	Effluent 6/24/2009 Sample	Effluent 9/21/2009 Sample	Effluent 12/21/2009 Sample
Zinc		ar i	0.11	< 0.0200	< 0.0200	< 0.0200	0.0148 JQ	< 0.0200	0.0123 JQ	< 0.0200	< 0.0200	0 0152 JQ
Phenol, mg/L												
Phenol		**		< 0.040	NA	NA	NA	NA	< 0.040	< 0 040	< 0.040	< 0.040
Phosphorus, ing/L												
Ortho Phosphorus		-	((22)	0.071	NA	NA	NA	N.A	NA	0.26	0.25	0.19 J
Phosphorus, Total		**	Sweet .	< 0 10	NA	NA	NA	< 0.10	< 0 10	0.084 JQ	0 19	0 17 J
Semi-Volatile Organic Compour	nds, ug/L											
1.2.4-Trichlorobenzene		-	3 4. 3	-5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
1,2-Dichlorobenzene		W-	5	< 5	< 5	< 5	~ 5	< 5	< 5	< 5	< 5	< 5
1,3-Dichlorobenzene		U	-	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
1,4-Dichlorobenzene		20	5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	~< 5
2,2'-oxybis(2-Chloropropane)		V-1	-	NA	NA	NA	NA	N.A	NA	< 5	< 5	< 5
2.4.5-Trichlorophenol			0660	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
2.4.6-Trichlorophenol		**	Catal	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
2,4-Dichlorophenol		***	(**)	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
2.4-Dimethylphenol		4570	5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
2.4-Dinitrophenol		No.	Ti na	< 28	< 29	< 29	< 29	< 28	< 29	< 29	< 28	< 28
2.4-Dinitrotoluene		5-		< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
2.6-Dichlorophenol		**	7.	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
2,6-Dimtrotoluene		-	(4-	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
2-Chloronaphthalene		N. Name	69 45 9	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
2-Chlorophenol		23	2 <u>22</u> 2	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
2-Methylnaphthalene		•	5243	< 5	< 5	< 5	<1.5	< 5	< 5	< 5	< 5	< 5
2-Methylphenol (o-Cresol)		**		< 5	~ 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
2-Nitroaniline		***	(m=)	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
2-Nitrophenol			ST#13	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
3.3'-Dichlorobenzidine		-		< 5	< 5	< 5	50.5	·< 5	< 5	< 5	< 5	< 5
3-Nitroanilme		••		< 5	< 5	< 5	< 5	< 5 UL	< 5	< 5	< 5	< 5
4.6-Dinitro-2-Methylphenol		221		< 14	< 14	< 14	< 14	< 14	< 14	< 14	< 14	< 14
4-Bromophenyl phenyl ether			89 4 5.	-5.5	< 5	< 5	~ 5	< 5	< 5	< 5	< 5	< 5
4-Chloro-3-Methylphenol		-	3.443	< 5	<. 5	< 5	<. 5	< 5	< 5	< 5	< 5	< 5
4-Chloroantine			2240	< 5	- 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5 UJ
4-Chlorophenyl phenyl ether			1. 4.4 .2	< 5	< 5	< 5	·: 5	< 5	< 5	< 5	< 5	< 5
4-Methylphenol (p-Cresof)		-	86 5 83	-5. 5	<: 5	< 5	√.5	< 5	< 5	< 5	< 5	< 5
4-Nitroaniline		-		< 5	<. 5	€ 5	< 5	< 5	<.5	< 5	< 5	< 5
4-Nitropheuol		221	-	~ 9	< 10	< 10	< 10	< 9	< 10	< 10	< 9	< 9
Acenaphthene		22	120	< 5	≼: 5	< 5	< 5	< 5	< 5	4.5	< 5	< 5
Acenaphthylene		22		< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
ulpha-Terpineol		***	S-40	<.5	×2.5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Aniline		**	1990	× 5	< 5	< 5	≤ 5	< 5	< 5	< 5	< 5	< 5 UJ
Anthracene				< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Benzidine			8 77 0	< 57	< 58	< 57	< 57	< 57	< 57 UJ	< 57	< 57	< 57 UJ
Benzota lanthracene				< 5	5.5	<.5	5. 5	< 5	< 5	< 5	< 5	< 5

Table 4: Treatment Plant Quarterly Effluent Sampling Results

	Sample Location. Sample Date:	ROD	KPDES	Effluent 3/3/2008	Effluent 6/30/2008	Effluent 6/30/2008	Effluent 9/29/2008	Effluent 12/17/2008	Effluent 3/25/2009	Effluent 6/24/2009	Effluent 9/21/2009	Effluent 12/21/2009
	Sample Type		Requirements	Sample	Sample	Duplicate	Sample	Sample	Sample	Sample	Sample	Sample
Benzola (pyrene		189	4	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Benzo(b)fluoranthene		4550	53	< 5	- 5	<: 5	< 5	< 5	< 5	< 5	< 5	< 5
Benzotg,h i pervlene		08 4 0	700	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Benzo(k)fluoranthene		(1 44))		< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Benzoie acid		188		< 28	< 29	< 29	< 29	< 28	< 29	< 29 R	< 28 R	< 28
Benzyl Alcohol		10 10 1	-	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
bis(2-Chloroethoxy)methane		(***)		< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
bist2-Chloroethyl)ether		W 272 /6		€ 5	< 5	~ 5	< 5	< 5	< 5	< 5	< 5	< 5
bist2-ChloroisopropyDether				< 5	< 5 .	< 5	< 5	< 5	<.5	NA	NA	NA
bis(2-Ethylhexyl)phthalate		(24)		< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Butyl benzyl phthalate		2443	5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Carbazole		(***)	1.175.0 (***	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Chrysene				< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Dibenzo(a,h)anthracene		**		< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Dibenzofiiran				< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Diethyl Phthalaic			-	< 5	<: 5	~ 5	< 5	< 5	< 5	< 5	< 5	< 5
Dimethyl phthalate		10220	822	·- 5	40.5	< 5	< 5	< 5	< 5	₹ 5	< 5	< 5
Di-n-buryl phthalate		8440	100	< 5	st 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Di-n-octyl phthalate				~ 5	< 5	√ 5	< 5	< 5	< 5	< 5	< 5	< 5
Fluoranthene			**	s 5	< 5	< 5	< 5	< 5	< 5	√ 5	< 5	< 5
Fluorene			1878	- 5	< 5	< 5	4.5	< 5	< 5	5, 5	< 5	< 5
Hexachlorobenzene			(200 0	s: 5	< 5	~ 5	< 5	< 5	< 5	< 5	< 5	< 5
Hexachlorobutadiene		V2076		< 5	< 5	< 5	< 5	< 5	<.5	< 5	< 5	< 5
Hexachloroevelopentadiene			44	< 14	×. 14	< 14	< 14	< 14	< 14	< 14	< 14	< 14
Hexachloroethane		1520	25	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Indeno(1,2,3-ed)pyrene		144	922	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Isophorone		1001	144	< 5	0.4 JQ	< 5	0.3 JQ	< 5	< 5	< 5	< 5	< 5
Naphthalene		••3) ==	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Nitrobenzene	8.5	250	**	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
N-Nitrosodimethylamine			255	< 5	< 5	< 5	0.5 JQ	< 5	< 5	< 5	< 5	< 5
N-Nitrosodi-ti-propylamine		11	155	< 5	< 5	< 5	< 5	< 5	< 5	×: 5	< 5	< 5
N-Nitrosodiphenylamine			=	< 5	< 5	≪ 5	< 5	< 5	< 5	< 5	< 5	< 5
Pentachlorophenol		10 <u>4 4</u> 12	700 E	< 14	≈ 14	< 14	< 14	< 14	< 14	< 14	< 14	< 14
Phenanthrene			S42	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Phenol		365000	5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Pyrene			. 8	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Pyridine		1.55	1.00	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Total Dissolved Solids (TDS),	mg/L					311	45	1272		pone	1-00	1446
Total Dissolved Solids		4.		1560	NA	NA	NA	1440	1620	1550	1680	1550
Total Kjeldahl Nitrogen, mg/l	<u>L</u>			8.4	NI A	SI S	NI A	1.3	* *	0.00 10	e 1.6	0.00 10
Total Kjeldahl Nitrogen		0.440		1.1	NA	NA	NA	1.3	1.1	0.80 JQ	< 1.0	0.90 JQ
Total Organic Carbon (TOC) Total Organic Carbon (TOC)	<u>, mg/L</u>			11.7	15.3	15.1	20.4	17.7	13.6	12 9	14 2	15.3

Table 4: Treatment Plant Quarterly Effluent Sampling Results

\$	ple Location: Sample Date: Sample Type:	ROD Requirements	KPDES Requirements	Effluent 3/3/2008 Sample	Effluent 6/30/2008 Sample	Effluent 6/30/2008 Duplicate	Effluent 9/29/2008 Sample	Effluent 12/17/2008 Sample	Effluent 3/25/2009 Sample	Effluent 6/24/2009 Sample	Effluent 9/21/2009 Sample	Effluent 12/21/2009 Sample
· · · · · · · · · · · · · · · · · · ·	апри турс	recommendations	recquirements	Sample	Gample	Duplicate	Sample	Sample	Sumple	Campic	Sample	Sample
Fotal Suspended Solids (TSS), mg/	10.											
Total Suspended Solids	L	-		< 12.0	NA	NA	NA	< 20.0	< 12 0	> 12.0	< 12.0	< 12.0
Volatile Organic Compounds, ug/L												
1,1.1.2-Tetrachloroethane				< 5	< 5	<: 5	< 5	< 5	< 5	< 5 UJ	< 5	< 5
I.1.1-Trichloroethane		**		< 5	< 5	< 5	< 5	< 5	< 5	< 5 UJ	< 5	< 5
1.1.2.2-Tetrachloroethane				< 5	< 5	< 5	< 5	< 5	< 5	< 5 UJ	< 5	< 5
1,1,2-Trichloroethane		**	5	< 5	< 5	< 5	< 5	< 5	< 5	< 5 UJ	< 5	< 5
1-Dichloroethane			5	< 5	<.5	-: 5	< 5	< 5	< 5	< 5 UJ	< 5	< 5
1,1-Dichloroethene			5	< 5	< 5	< 5	< 5	< 5	< 5	~ 5 U.I	< 5	< 5
L1-Dichloropropene				< 5	< 5	< 5	< 5	< 5	< 5	< 5 UJ	< 5	< 5
.2.3-Trichlorobenzene		-		< 5	< 5	< 5	< 5	< 5 UL	< 5	< 5 UJ	< 5	< 5
1,2,3-Trichloropropane			-	< 5	< 5	<: 5	< 5	< 5	< 5	< 5 UJ	< 5	< 5
.2.4-Trichlorobenzene			**	< 5	< 5	< 5	< 5	< 5 UL	< 5	< 5 UJ	< 5	< 5
.2.4-Trimethylbenzene		-		< 5	< 5	< 5	< 5	< 5 UL	< 5	< 5 UJ	< 5	< 5
.2-Dibromo-3-Chloropropane		-		< 5	< 5	< 5	< 5	< 5	< 5	< 5 UJ	< 5	< 5
,2-Dibromoethane (Ethylene dibrom	vida i			~ 5	~ 5	< 5	< 5	< 5	< 5	< 5 UJ	< 5	< 5
.2-Dichlorobenzene	nuc i		5	< 5	< 5	- 5	< 5	< 5 UL	< 5	< 5 U.I	< 5	< 5
2-Dichloroethane			5	< 5	× 5	< 5	< 5	< 5	< 5	< 5 UJ	< 5	< 5
.2-Dichloropropane		124	5	< 5	< 5	× 5	< 5	× 5	< 5	< 5 UJ	< 5	< 5
3.5-Trimethylbenzene		100	••	- 5	< 5	× 5	< 5	< 5 UIL	< 5	< 5 UJ	₹5	< 5
.3-Dichlorobenzene				< 5	× 5	< 5	< 5	< 5 UL	< 5	< 5 UJ	× 5	< 5
				- 5	< 5	4.5	4.5	< 5	< 5	< 5 UJ	< 5	< 5
3-Dichloropropane			5	< 5		4.5	< 5	< 5 UL	< 5	< 5 (J)		< 5
4-Dichlorobenzene			100		~ 5		Di			. 30 1970	< 5	
.2-Dichloropropane				5	< 5	< 5	s: 5	< 5	< 5	< 5 (J)	< 5	< 5
-Butanone (Methyl ethyl ketone)				- 10	~ 10	- 10	- 10	< 10	< 10	~ 10 UJ	< 10	< 10
-Chloroethyl vinyl ether		(C 710)		~ 10	+ 10 (7)	~ 10 UJ	~ 10	~ 10	< 10 UJ	- 10 m	< 10	< 10 UJ
-C'hlorotolnene		1000	•-	~ 5	<i>-</i> 5	× 5	< 5	< 5 UL	< 5	< 5 UJ	< 5	< 5
-Hexanone				< 10	< 10	~ 10	·: 10	< 10	< 10	< 10 UJ	< 10	< 10
-Chlorotoluene		1.44		~ 5	·: 5	< 5	₹.5	< 5 UL	< 5	< 5 UJ	< 5	< 5
-Isopropyltoluene (Cymene)				~ 5	~ 5	. 5	< 5	<5 UL	<: 5	· 5 U.I	< 5	< 5
Acetone		(a.e.)		< 20	~. 20	< 20	< 20	< 20	< 20	< 20 UJ	< 20	< 20
terolein		(3-4)	**	< 50	< 50	< 50	< 50	< 50	< 50	< 50 UJ	< 50	< 50
crylonitrile		**		< 50	< 50	- 50	< 50	< 50	< 50	<: 50 UJ	< 50	< 50
Senzene			.5	< 5	< 5	s. 5	< 5	< 5 UL	< 5	< 5 UJ	< 5	< 5
romobenzene				< 5	< 5	< 5	< 5	< 5	< 5	< 5 UJ	< 5	< 5
romodichloromethane				< 5	< 5	< 5	< 5	< 5	< 5	< 5 U.I	√ 5	< 5
fromoform (Tribiomomethane)				< 5	< 5	< 5	< 5	1 JQ	< 5	~ 5 UJ	< 5	I JQ
romomethane (Methyl bronude)				< 5	< 5	< 5	< 5	< 5	< 5	5 UJ	< 5	< 5
arbon disulfide		1021		< 5	< 5	S. 5	< 5	< 5	< 5	< 5 UJ	< 5	< 5
arbon tetrachloride		(144)	-	< 5	< 5	< 5	< 5	< 5	< 5	< 5 UJ	< 5	< 5
hlorobenzene				< 5	< 5	< 5	< 5	< 5 UL	< 5	< 5 UJ	< 5	< 5
hlorodibromomethane (Dibromochl	oromethane)	79 44 3		< 5	< 5	< 5	< 5	< 5	< 5	< 5 UJ	< 5	< 5
Chloroethane				< 5	< 5	< 5	< 5	< 5	< 5	< 5 U.I	< 5	< 5
Hiloroform				< 5	< 5	< 5	< 5	< 5	< 5	< 5 UJ	< 5	< 5

Table 4: Treatment Plant Quarterly Effluent Sampling Results

Sample Location Sample Date Sample Type:	ROD Requirements	KPDES Requirements	Effluent 3/3/2008 Sample	Effluent 6/30/2008 Sample	Effluent 6/30/2008 Duplicate	Effluent 9/29/2008 Sample	Effluent 12/17/2008 Sample	Effluent 3/25/2609 Sample	Effluent 6/24/2009 Sample	Effluent 9/21/2009 Sample	Effluent 12/21/2009 Sample
Chloromethane (Methyl chloride)		24	< 5	< 5	< 5	< 5	*4.5	< 5	< 5 UJ	< 5	< 5
cis-1.2-Dichloroethene		***	< 5	< 5	< 5	< 5	< S	< 5	< 5 UJ	< 5	×2.5
cis-1,3-Dichloropropene	-	**	< 5	< 5	·c 5	< 5	·4.5	< 5	< 5 UJ	< 5	<2.5
Cyclohexane	**		< 5	NA	NA	NA	NA	NA	NA	NA	N.A
Dibromomethane (Methylene brounde)			< 5	< 5	< 5	< 5	<: 5	< 5	< 5 UJ	< 5	< 5
Dichlorodifluoromethane			< 5	< 5	< 5	< 5	< 5	< 5	< 5 UJ	< 5	< 5
Ethylbenzene		5	< 5	< 5	< 5	< 5	< 5 UL	< 5	< 5 UJ	< 5	<: 5
Hexachlorobutadiene			< 5	< 5	< 5	< 5	< 5	< 5	< 5 UJ	< 5	< 5
lodomethane	**	••	< 5	< 5	< 5	< 5	< 5	< 5	< 5 UJ	< 5	< 5
(Cumene)	==		< 5	< 5	< 5	< 5	< 5	< 5	< 5 UJ	< 5	< 5
n,p-Xylenes			NA	NA	NA	NA	< 5 UL	< 5	< 5 UJ	< 5	< 5
Methyl isobutyl ketone (4-Methyl-2-pentanone)	••	••	< 10	< 10	< 10	< 10	< 10	< 10	< 10 UJ	< 10	< 10
Methylene chloride (Dichloromethane)	5870	5	< 5	< 5	< 5	< 5	< 5	< 5	< 5 UJ	< 5	< 5
Naphthalene		**	< 5	< 5	< 5	< 5	< 5	< 5	< 5 UJ	< 5	< 5
n-Butylbenzene			< 5	< 5	< 5	< 5	< 5 UL	< 5	< 5 UJ	< 5	< 5
1-Propylbenzene			< 5	< 5	< 5	< 5	< 5 UL	< 5	< 5 UJ	< 5	< 5
n-Nylene			NA	NA	NA	< 5	< 5 UL	< 5	< 5 U.1	< 5	< 5
sec-Butylbenzene (2-Phenylbutane)		92)	< 5	×: 5	< 5	< 5	×1.5	< 5	< 5 UJ	< 5	< 5
Styrene			< 5	< 5	< 5	< 5	< 5 UL	< 5	< 5 UJ	< 5	< 5
ert-Burylbenzene			< 5	< 5	< 5	< 5	< 5 UL	< 5	< 5 UJ	< 5	< 5
Tetrachloroethene (PCE)		5	< 5	< 5	< 5	< 5	< 5	< 5	< 5 UJ	< 5	< 5
Foluene		5	< 5	< 5	< 5	< 5	< 5 UL	< 5	< 5 UJ	< 5	< 5
rans-1,2-Dichloroethene	••	**	< 5	< 5	< 5	< 5	< 5	< 5	< 5 UJ	< 5	< 5
raus-1,3-Dichloropropene			< 5	< 5	< 5	< 5	< 5	< 5	< 5 UJ	< 5	< 5
raus-1.4-Dichlorobutene		272	< 50	< 50	< 50	< 50	< 50	< 50	< 50 UJ	< 50	< 50
Lichloroethene (TCE)		5	< 5	< 5	< 5	< 5	< 5	< 5	< 5 UJ	< 5	< 5
Friehlorofluoromethane			< 5	< 5	< 5	< 5	< 5	< 5	< 5 · UJ	< 5	< 5
Vinyl Acetate			< 10	NA	NA	NA	NA	< 10	< 10 UJ	< 10	< 10
Vinyl Chloride	••	••	< 5	< 5	< 5	< 5	< 5	< 5	< 5 UJ	< 5	< 5
Nylenes, Total			< 5	< 5	< 5	< 5	NA	NA	NA	NA	NA

Notes:

Analytical methods vary per sampling event and are listed below.

pH - EPA 150.1, SM 4500HB

Temperature - EPA 170.1, SM 2550B

Turbidity - EPA 180,1

Ammonia Nitrogen - EPA 350 1, SM 4500NH3 B/CM

Anions - EPA 300 0, EPA 353,3, EPA 354,1

Biological Oxygen Demand (BOD) - EPA 405.1, SM 5210B

Chemical Oxygen Demand (COD) - EPA 410 1, EPA 410,4, SM 5220D

Cyanide - EPA 335.4

Mercury - EPA 200.7, EPA 245.1, EPA 1631 Low Level

Phenol - EPA 420 4

Phosphorus - EPA 300.0, EPA 365 1, SM4500P

Semi-Volatile Organic Compounds - EPA 625, SW846-8270C Total Dissolved Solids (TDS) - EPA 160-1, 1-1750-85, SM2540C

Table 4: Treatment Plant Quarterly Effluent Sampling Results

Sample Location:	-		Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent
Sample Date.	ROD	KPDES	3/3/2008	6/30/2008	6/30/2008	9/29/2008	12/17/2008	3/25/2009	6/24/2009	9/21/2009	12/21/2009
Sample Type.	Requirements	Requirements	Sample	Sample	Duplicate	Sample	Sample	Sample	Sample	Sample	Sample

Total Kieldahl Nitrogen - EPA 351 2, EPA 351 3, SM 4500

Total Metals - EPA 200.7, EPA 200.8

Total Organic Carbon (TOC) - SM 5310B, SM 5310C, SW846 9060 Total Suspended Solids (TSS) - EPA 160.2, 1-3765-85, SM2540D Volatile Organic Compounds - EPA 624, SW846 8260B

Data Flag Definitions:

J = Estimated value based on OC data

JB = Estimated, result may be biased high or false positive based on blank data

JQ = Estimated value; reported between the CRDL and MDL

NA = Not Analyzed

UI = Undetected; the reported quantitation limit is approximate

UL = Undetected with a possible low bias

-- = Regulatory requirement not established for this constituent

Prepared by/Date: CLC 3/18/10 Checked by/Date: RMB 3/18/10

Table 4: Treatment Plant Quarterly Effluent Sampling Results

Sar	nple Location:			Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluen
	Sample Date:	ROD	KPDES	3/7/2007	6/28/2007	9/14/2007	12/17/2007	3/3/2008	6/30/2008	6/30/2008	9/29/2008	12/17/20
	sample Type:	Requirements	Requirements	Sample	Sample	Sample	Sample	Sample	Sample	Duplicate	Sample	Sample
IXEDBASE LABORATORY AN	ALYSIS:											
H, pH units												
H		100 M		7.6	7.87	7.52	8.18 J	7.7	NA	NA	NA	7.9
Temperature, deg Celcius												
Temperature		S mir		NA	22.9	21.3	20	NA	NA	NA	NA	NA
Curbidity, NTU												
Turbidity		(**		<1	<1	<1	1.1	0.43	NA	NA	NA	0.44 J
Ammonia Nitrogen, mg/L												
Nitrogen, ammonia (As N)		2000	(44)	<0.1	<0.08	<0.1	0.2	0.86	NA	NA	NA	0.27 J
Anions, mg/L												
Jitrogen, nitrate		7 <u>22</u>	220	<1.5	2.2	< 0.5	0.55	0.82	NA	NA	NA	NA
litrogen, Nitrate+Nitrite		124	44	<2.6	2.2	< 0.5	< 0.26	1.1	NA	NA	NA	NA
litrogen, nitrite		122	<u> 22</u>	1.2	< 0.75	<2	< 0.15	< 0.50	NA	NA	NA	NA
Biochemical Oxygen Demand (BOL), mg/L											
Biochemical Oxygen Demand (BOD)		3 26	88	<5	28	<5	<5	<2.4	<3.6	<3.5	<3.6	<3.6
Chemical Oxygen Demand (COD),	mg/L											
Chemical Oxygen Demand (COD)		3907	-55	<10	36	54	<10	<50.0	48.7	48.7	64.6	60.1
Cyanide, mg/L												
Cyanide		20 m br 20 m br	0.005	< 0.01	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Mercury, Total, ug/L												
Mercury		S =04	0.012	<0.2	< 0.2	<0.2	< 0.2	0.00396	0.00266	0.00296	0.0076	0.0013
Phosphorus, mg/L												
Ortho Phosphorus		i 	: 	<1.6	< 0.2	< 0.2	< 0.8	NA	NA	NA	NA	NA
hosphorus, Total		1919	: 	0.074	0.096	0.13	0.089	< 0.10	NA	NA	NA	< 0.10
emi-Volatile Organic Compounds,	ug/L											
,2,4-Trichlorobenzene		i Hara		<10	<10	<10	<10	<5	<5	<5	<5	<5
,2-Dichlorobenzene		724	5	<10	<10	NA	<10	<5	<5	<5	<5	<5
3-Dichlorobenzene		700 M	22	<10	<10	NA	<10	<5	<5	<5	<5	<5
4-Dichlorobenzene		7 <u>22</u>	5	<10	<10	NA	<10	<5	<5	<5	<5	<5
4,5-Trichlorophenol		989	928	<10	<10	<10	<10	<5	<5	<5	<5	<5
4,6-Trichlorophenol		200	922	<10	<10	<10	<10	<5	<5	<5	<5	<5
,4-Dichlorophenol		2000	922	<10	<10	<10	<10	<5	<5	<5	<5	<5
,4-Dimethylphenol		4570	5	<10	<10	<10	<10	<5	<5	<5	<5	<5
,4-Dinitrophenol		246	-	<50	<10	<50	<51	<28	<29	<29	<29	<28
,4-Dinitrotoluene		0315	-	<10	<10	<10	<10	<5	<5	<5	<5	<5

Table 4: Treatment Plant Quarterly Effluent Sampling Results

S	ample Location:			Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluen
	Sample Date: Sample Type:	ROD	KPDES	3/7/2007	6/28/2007	9/14/2007	12/17/2007	3/3/2008	6/30/2008	6/30/2008	9/29/2008	12/17/200
		Requirements	Requirements	Sample	Sample	Sample	Sample	Sample	Sample	Duplicate	Sample	Sample
2,6-Dinitrotoluene				-10	<10	-10	<10				<5	<5
				<10 <10	<10	<10 <10	<10 <10	<5 <5	<5 <5	<5 <5	<5	<5
2-Chloronaphthalene		23		<10	<10	<10	<10	<5	< ₅	<5	<5	<5
2-Chlorophenol								<5		<5		
2-Methylnaphthalene		S MB	(8.5)	<10 <10	<10 <10	<10 <10	<10 <10	<5	<5 <5	<5	<5 <5	<5 <5
2-Methylphenol (o-Cresol) 2-Nitroaniline		3 7.8		NA	NA	NA	NA	<5	<5	<5	<5	<5
2-Nitrophenol		100	:==	<10	<10	<10	<10	<5	<5	<5	<5	<5
3,3'-Dichlorobenzidine		1949	: ==	<50	<10	<50	<51	<5	<5	<5	<5	<5
3-Methylphenol & 4-Methylphenol		1848	: ==	<10	NA	NA	NA	NA	NA	NA	NA	NA
-Nitroaniline		3404	(##	NA	NA	NA	NA	<5	<5	<5	<5	<5
,6-Dinitro-2-Methylphenol		344	**	<50	<10	<50	<51	<14	<14	<14	<14	<14
-Bromophenyl phenyl ether		344		<10	<10	<10	<10	<5	<5	<5	<5	<5
4-Chloro-3-Methylphenol		-	22	<20	<10	<20	<20	<5	<5	<5	<5	<5
l-Chloroaniline		-	22	NA	NA	NA	NA	<5	<5	<5	<5	<5
I-Chlorophenyl phenyl ether		722	222	<10	<10	<10	<10	<5	<5	<5	<5	<5
4-Methylphenol (p-Cresol)		122	722	NA	NA	NA	NA	<5	<5	<5	<5	<5
l-Nitroaniline		122		NA	NA	NA	NA	<5	<5	<5	<5	<5
-Nitrophenol		200	-	<50	<10	<50	<51	<9	<10	<10	<10	<9
Acenaphthene		320	160	<10	<10	<10	<10	<5	<5	<5	<5	<5
Acenaphthylene		3 44	100	<10	<10	<10	<10	<5	<5	<5	<5	<5
lpha-Terpineol		1 44	125	NA	NA	NA	NA	<5	<5	<5	<5	<5
Aniline		100	- 	NA	NA	NA	NA	<5	<5	<5	<5	<5
Anthracene		100	- 	<10	<10	<10	<10	<5	<5	<5	<5	<5
Benzidine		350	- 	< 50	<36	<50	<51	<57	<58	<57	<57	<57
Benzo(a)anthracene		The ser		<10	<10	<10	<10	<5	<5	<5	<5	<5
Benzo(a)pyrene		The state		<10	<10	<10	<10	<5	<5	<5	<5	<5
Benzo(b)fluoranthene		Troops		<10	<10	<10	<10	<5	<5	<5	<5	<5
Benzo(g,h,i)perylene		1 -1	(5.5)	<10	<10	<10	<10	<5	<5	<5	<5	<5
Benzo(k)fluoranthene				<10	<10	<10	<10	<5	<5	<5	<5	<5
Benzoic acid				NA	NA	NA	NA	<28	<29	<29	<29	<28
Benzyl Alcohol		144	:==	<20	<10	<20	<20	<5	<5	<5	<5	<5
ois(2-Chloroethoxy)methane		1	:==	<10	<10	<10	<10	<5	<5	<5	<5	<5
ois(2-Chloroethyl)ether		122		<10	<10	<10	<10	<5	<5	<5	<5	<5
ois(2-Chloroisopropyl)ether		5 <u>246</u>	200	<10	<10	<10	<10	<5	<5	<5	<5	<5
is(2-Ethylhexyl)phthalate		322	(EE	<10	<10	<10	<10	<5	<5	<5	<5	<5
Butyl benzyl phthalate		344	5	<10	<10	<10	<10	<5	<5	<5	<5	<5
Carbazole		724	-	<10	<10	<10	<10	<5	<5	<5	<5	<5
Chrysene		7 		<10	<10	<10	<10	<5 <5	<5	<5 <5	<5 <5	<5 <5
resols, Total		7 		NA	<10	<10	<10	NA		NA	NA	NA
The second secon		200							NA			
Dibenzo(a,h)anthracene		56W		<10	<10	<10	<10	<5	<5	<5	<5	<5
Dibenzofuran		1000 C		<10	<10	<10	<10	<5	<5	<5	<5	<5
Diethyl Phthalate		200	100	<10	<10	<10	<10	<5	<5	<5	<5	<5
Dimethyl phthalate		1 111	**	<10	<10	<10	<10	<5	<5	<5	<5	<5
Di-n-butyl phthalate		1 111	1000 1000	<10	<10	<10	<10	<5	<5	<5	<5	<5
Di-n-octyl phthalate		3 24	122	<10	<10	<10	<10	<5	<5	<5	<5	<5
luoranthene		5 50	67.7	<10	<10	<10	<10	<5	<5	<5	<5	<5

Table 4: Treatment Plant Quarterly Effluent Sampling Results

Si	ample Location:			Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent
	Sample Date:	ROD	KPDES	3/7/2007	6/28/2007	9/14/2007	12/17/2007	3/3/2008	6/30/2008	6/30/2008	9/29/2008	12/17/2008
	Sample Type:	Requirements	Requirements	Sample	Sample	Sample	Sample	Sample	Sample	Duplicate	Sample	Sample
luorene				<10	<10	<10	<10	<5	<5	<5	<5	<5
Hexachlorobenzene		100		<10	<10	<10	<10	<5	<5	<5	<5	<5
Hexachlorobutadiene				<10	<10	<10	<10	<5	<5	<5	<5	<5
Hexachlorocyclopentadiene		5 7/2		<10	<10	<10	<10	<14	<14	<14	<14	<14
Hexachloroethane		5 77		<10	<10	<10	<10	<5	<5	<5	<5	<5
ndeno(1,2,3-cd)pyrene		3 400	(4.0	<10	<10	<10	<10	<5	<5	<5	<5	<5
sophorone		ine.	:==	<10	<10	<10	<10	<5	0.4 JO	<5	0.3 JO	<5
Japhthalene			:==	<10	<10	<10	<10	<5	<5	<5	<5	<5
vitrobenzene		250	:==	<10	<10	<10	<10	<5	<5	<5	<5	<5
V-Nitrosodimethylamine		5 44		<10	<10	<10	<10	<5	<5	<5	0.5 JQ	<5
N-Nitrosodi-n-propylamine		11		<10	<10	<10	<10	<5	<5	<5	<5	<5
V-Nitrosodiphenylamine		57,000 5 44		<10	<10	<10	<10	<5	<5	<5	<5	<5
Pentachlorophenol		222	122	<50	<10	<50	<51	<14	<14	<14	<14	<14
henanthrene			82	<10	<10	<10	<10	<5	<5	<5	<5	<5
Phenol		365000	5	<10	<10	<10	<10	<5	<5	<5	<5	<5
Pyrene			22	<10	<10	<10	<10	<5	<5	<5	<5	<5
yridine		12/2	22	<10	<10	<10	<10	<5	<5	<5	<5	<5
otal Dissolved Solids, mg/L												
otal Dissolved Solids		194 <u>4</u>	1222 Tarisi	1800	1400	1700	1400	1560	NA	NA	NA	1440
Total Kjeldahl Nitrogen, mg/L												
Total Kjeldahl Nitrogen		1977		0.34	1.2 J	1.2	0.72	NA	NA	NA	NA	1.3
Total Metals, mg/L												
Antimony		0.062	1.6	< 0.01	< 0.01	< 0.005	< 0.005	< 0.0010	0.00063	0.00061	0.00087 JQ	
Arsenic		0.011	0.05	< 0.01	< 0.01	< 0.1	< 0.1	< 0.0020	0.0019	0.0023	< 0.0020	0.0011 J
Barium		0.231	THE STATE OF THE S	0.058	0.04	0.05	0.04	0.0567	0.0464	0.0553	0.0624	0.0558
Beryllium		(=)3	0.0053	< 0.01	< 0.01	< 0.005	< 0.005	< 0.00020	0.00026	0.00029	< 0.00050	< 0.00050
Cadmium		(=)=	0.0011	< 0.01	< 0.01	< 0.005	< 0.005	< 0.00025	< 0.00050	< 0.00050	< 0.00050	< 0.00050
Calcium		(-)-		144	100	120	136	137	115	127	142	124
Chromium		0.011	0.011	< 0.01	< 0.01	< 0.005	< 0.005	< 0.0150	0.0048 JQ	0.0044 JQ	0.0047 JQ	0.004 J
Copper			0.012	< 0.01	< 0.01	< 0.005	< 0.005	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100
ron		3 21	1	0.106	0.09	0.1	0.1	< 0.200	< 0.200	< 0.200	0.116 JQ	0.0605 J
ead		H2G	0.0032	< 0.01	< 0.01	< 0.005	< 0.005	< 0.0010	0.0001 JQ	0.000086 JQ	Administration of the Control of the	
Magnesium		H2G		144	104	110	128	126	111	120	143	117
Manganese		700	Section 1	0.06	0.5	1.6	0.39	0.41	0.287 J	0.68 J	0.968	1.14
lickel		720	0.16	0.013	0.02	0.02	0.01	0.0151	0.0191	0.0227	0.0304	0.0243
elenium		924 <u>-</u>	0.005	< 0.05	< 0.05	< 0.05	< 0.025	0.0031 JQ	0.0061 JQ	0.0064 JQ	0.00031 JQ	0.00033
ilver		744	0.00012	< 0.01	< 0.01	< 0.005	< 0.005	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.0005
hallium		0.011	0.04	< 0.05	< 0.05	< 0.05	< 0.025	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.0005
Zinc		244	0.11	0.01	< 0.01	0.03	<0.005	<0.0200	<0.0200	<0.0200	0.0148 JQ	<0.0200
Total Organic Carbon (TOC), mg/	<u>L</u>											
Fotal Organic Carbon (TOC)		3 <u>510</u>		12	16	26	NA	11.7	15.3	15.1	20.4	17.7

Table 4: Treatment Plant Quarterly Effluent Sampling Results

San	nple Location:			Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent
	Sample Date:	ROD	KPDES	3/7/2007	6/28/2007	9/14/2007	12/17/2007	3/3/2008	6/30/2008	6/30/2008	9/29/2008	12/17/2008
	Sample Type:	Requirements	Requirements	Sample	Sample	Sample	Sample	Sample	Sample	Duplicate	Sample	Sample
Total Suspended Solids (TSS), mg/L												
Total Suspended Solids				<5	<1.7	<5	5	<12.0	NA	NA	NA	<20.0
Volatile Organic Compounds, ug/L												
1,1,1,2-Tetrachloroethane				<10	<5	<5	<5	<5	<5	<5	<5	<5
1,1,1-Trichloroethane				<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1,2,2-Tetrachloroethane				<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1,2-Trichloroethane		-	5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethane			5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethene		(111)	5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,1-Dichloropropane				<5	NA	NA	NA	NA	NA	NA	NA	NA
1,1-Dichloropropene		-		NA	<5	<5	<5	<5	<5	<5	<5	<5
1.2.3-Trichlorobenzene				<5	NA	NA	NA	<5	<5	<5	<5	<5
1,2,3-Trichloropropane				<5	<5	<5	<5	<5	<5	<5	<5	<5
1,2,4-Trichlorobenzene				<10	<5	<5	<5	<5	<5	<5	<5	<5
1,2,4-Trimethylbenzene				<5	<5	<5	<5	<5	<5	<5	<5	<5
1,2-Dibromo-3-Chloropropane				<5	<5	<5	<5	<5	<5	<5	<5	<5
1,2-Dibromoethane (Ethylene dibromic	de)			<5	<5	<5	<5	<5	<5	<5	<5	<5
1.2-Dichlorobenzene			5	<10	<5	<5	<5	<5	<5	<5	<5	<5
1,2-Dichloroethane			5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,2-Dichloropropane		24	5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,3,5-Trimethylbenzene			**	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,3-Dichlorobenzene				<10	<5	<5	<5	<5	<5	<5	<5	<5
1,3-Dichloropropane				<5	<5	<5	<5	<5	<5	<5	<5	<5
1,4-Dichlorobenzene			5	<10	<5	<5	<5	<5	<5	<5	<5	<5
2,2-Dichloropropane				<5	<5	<5	<5	<5	<5	<5	<5	<5
2-Butanone (Methyl ethyl ketone)				<10	<25	<25	26	<10	<10	<10	<10	<10
2-Chloroethyl vinyl ether				<5	<5	<5	<5	<10	<10 UJ	<10 UJ	<10	<10
2-Chlorotoluene			**	<5	<5	<5	<5	<5	<5	<5	<5	<5
2-Hexanone				<10	<25	<25	<25	<10	<10	<10	<10	<10
4-Chlorotoluene				<5	<5	<5	<5	<5	<5	<5	<5	<5
				NA.	NA	NA	NA	<5	<5	<5	<5	<5
4-Isopropyltoluene (Cymene) Acetone					<25					<20	<20	524
				<5		<25	<25	<20	<20	1776		<20
Acrolein				<10	<25	<25	<25	<50	<50	<50	<50	<50
Acrylonitrile				<10	<5	<5	<5	<50	<50	<50	<50	<50
Benzene			5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Bromobenzene				<5	<5	<5	<5	<5	<5	<5	<5	<5
Bromodichloromethane				<5	<5	<5	<5	<5	<5	<5	<5	<5
Bromoform (Tribromomethane)				<5	<5	<5	<5	<5	<5	<5	<5	1 JQ
Bromomethane (Methyl bromide)			***	<10	<5	<5	<5	<5	<5	<5	<5	<5
Carbon disulfide			and the	<10	<5	<5	<5	<5	<5	<5	<5	<5
Carbon tetrachloride			**	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chlorobenzene				<5	<5	<5	<5	<5	<5	<5	<5	<5
Chlorobromomethane				<10	<5	<5	<5	NA	NA	NA	NA	NA
Chlorodibromomethane				NA	<5	<5	<5	<5	<5	<5	<5	<5
Chloroethane				<10	<5	<5	<5	<5	<5	<5	<5	<5

Table 4: Treatment Plant Quarterly Effluent Sampling Results

Sample Location:			Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent
Sample Date:	ROD	KPDES	3/7/2007	6/28/2007	9/14/2007	12/17/2007	3/3/2008	6/30/2008	6/30/2008	9/29/2008	12/17/2008
Sample Type:	Requirements	Requirements	Sample	Sample	Sample	Sample	Sample	Sample	Duplicate	Sample	Sample
Chloroform	-		<5	<5	<5	<5	<5	<5	<5	<5	<5
Chloromethane (Methyl chloride)			<5	<5	<5	<5	<5	<5	<5	<5	<5
cis-1,2-Dichloroethene		(44)	<5	<5	<5	<5	<5	<5	<5	<5	<5
cis-1,3-Dichloropropene			<5	<5	<5	<5	<5	<5	<5	<5	<5
Cyclohexane			NA	NA	NA	NA	<5	NA	NA	NA	NA
Dibromodichloromethane		22	<5	NA	NA	NA	NA	NA	NA	NA	NA
Dibromomethane (Methylene bromide)			<5	<5	<5	<5	<5	<5	<5	<5	<5
Dichlorodifluoromethane			<5	<5	<5	<5	<5	<5	<5	<5	<5
Ethylbenzene		5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Hexachlorobutadiene			<10	NA	NA	NA	<5	<5	<5	<5	<5
Iodomethane			<5	<5	<5	<5	<5	<5	<5	<5	<5
Isopropylbenzene (Cumene)			<5	<5	<5	<5	<5	<5	<5	<5	<5
m.p-Xylenes			<5	NA	NA	NA	NA	NA	NA	NA	<5
Methyl isobutyl ketone (4-Methyl-2-pentanone)			<10	<25	<25	<25	<10	<10	<10	<10	<10
Methylene chloride (Dichloromethane)	5870	5	<10	<25	<10	<10	<5	<5	<5	<5	<5
Naphthalene			<10	NA	NA	NA	<5	<5	<5	<5	<5
n-Butylbenzene			<5	<5	<5	<5	<5	<5	<5	<5	<5
n-Propylbenzene			<5	<5	<5	<5	<5	<5	<5	<5	<5
o-Xylene			<5	<5	<5	<5	NA	NA	NA	<5	<5
sec-Butylbenzene (2-Phenylbutane)		**	<5	<5	<5	<5	<5	<5	<5	<5	<5
Styrene			<5	<5	<5	<5	<5	<5	<5	<5	<5
tert-Butylbenzene			<5	<5	<5	<5	<5	<5	<5	<5	<5
Tetrachloroethene (PCE)		5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Toluene		5	<5	<5	<5	<5	<5	<5	<5	<5	<5
trans-1,2-Dichloroethene			<5	<5	<5	<5	<5	<5	<5	<5	<5
trans-1,3-Dichloropropene			<5	<5	<5	<5	<5	<5	<5	<5	<5
trans-1.4-Dichlorobutene		-	NA	NA	NA	NA	<50	< 50	<50	<50	<50
Trichloroethene (TCE)		5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Trichlorofluoromethane	40.00		<5	<5	<5	<5	<5	<5	<5	<5	<5
Vinyl Acetate			<10	<5	<5	<5	<10	ND (a)	ND (a)	ND (a)	ND (a)
Vinyl Chloride			<10	<5	<2	<2	<5	<5	<5	<5	<5
Xylenes, Total			NA	<10	<10	<10	<5	<5	<5	<5	NA

Notes:

-- = Discharge requirement not established for this constituent

= Exceeds discharge criteria

Non-detected values with reporting limits greater than the discharge requirement were compared to their method detection limits (MDLs). The MDLs were below or equal to the discharge requirement.

Analytical methods vary per sampling event and are listed below:

pH - EPA 150.1, SM 4500HB

Temperature - EPA 170.1, SM 2550B

Turbidity - EPA 180.1

Ammonia Nitrogen - EPA 350.1, SM 4500NH3B/CM

Table 4: Treatment Plant Quarterly Effluent Sampling Results

Sample Location:			Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent
Sample Date:	ROD	KPDES	3/7/2007	6/28/2007	9/14/2007	12/17/2007	3/3/2008	6/30/2008	6/30/2008	9/29/2008	12/17/2008
Sample Type:	Requirements	Requirements	Sample	Sample	Sample	Sample	Sample	Sample	Duplicate	Sample	Sample

Anions - EPA 300.0, EPA 353.3, EPA 354.1
Biochemical Oxygen Demand (BOD) - EPA 405.1, SM 5210B
Chemical Oxygen Demand (COD) - EPA 410.4, SM 5220D
Cyanide - EPA 335.4
Mercury - EPA 200.7, EPA 245.1
Phosphorus - EPA 300.0, EPA 365.1, SM4500P
Semi-Volatile Organic Compounds - EPA 625, SW846 8270C
Total Dissolved Solids (TDS) - EPA 160.1, 1-1750-85
Total Kjeldahl Nitrogen - EPA 351.3, SM 4500
Total Metals - EPA 200.7, EPA 200.8
Total Organic Carbon (TOC) - SM 5310C, SW846 9060
Total Suspended Solids (TSS) - EPA 160.2, I-3765-85
Volatile Organic Compounds - EPA 624, SW846 8260B

Laboratory analysis by Microbac Labs Louisville, KY (2007) Laboratory analysis by Lancaster Labs Lancaster, PA (2008)

Data Flag Definitions:

(a) = Vinyl Acetate was not detected in the sample based on an examination of GC/MS extracted ion current profiles at the appropriate retention time.

J = Estimated value based on QC data
JH = Estimated value, biased high based on QC data
JQ = Estimated value; reported between the CRDL and MDL
NA = Not Analyzed
ND = Not Detected

Prepared by/Date: RMB 3/2/09 Checked by/Date: JAH 3/2/09

Table 4: Treatment Plant Quarterly Effluent Sampling Results

	Sample Location: Sample Date:	ROD Requirements	KPDES Requirements	Effluent 1/4/2006	Effluent 3/29/2006	Effluent 5/31/2006	Effluent 9/6/2006	Effluent 12/15/2006	Effluent 3/7/2007	Effluent 6/28/200
Semi-Volatile Organic Compounds - ug/L										
		***	arts.	<10	<10	<10	<10	<10	<10	<10
1,2,4-Trichlorobenzene			5	<10	<10	<10	<10	<10	<10	<10
,2-Dichlorobenzene				<10			<10			<10
,3-Dichlorobenzene	9	-	5		<10	<10	<10	<10	<10	<10
,4-Dichlorobenzene			-	<10	<10	<10	<10	<10	<10	<10
2,4,5-Trichlorophenol		-		<10	<10	<10	<10	<10	<10	<10
2,4,6-Trichlorophenol				<10	<10	<10		<10	<10	
2,4-Dichlorophenol		4570		<10	<10	<10	<10	<10	<10	<10
2,4-Dimethylphenol		4570	5	<10	<10	<10	<10	<10	<10	<10
2,4-Dinitrophenol		S 		<10	<10	<10	<10	<10	<50	<10 U
2,4-Dinitrotoluene		***		<10	<10	<10	<10	<10	<10	<10
2,6-Dinitrotoluene		-	•-	<10	<10	<10	<10	<10	<10	<10
2-Chloronaphthalene				<10	<10	<10	<10	<10	<10	<10
2-Chlorophenol		23		<10	<10	<10	<10	<10	<10	<10
2-Methylnaphthalene		-		<10	<10	<10	<10	<10	<10	<10
2-Methylphenol (o-Cresol)		-		<10	<10	<10	<10	<10	<10	<10
2-Nitrophenol		-		<10	<10	<10	<10	<10	<10	<10
3,3'-Dichlorobenzidine				<10	<10	<10	<10	<10	<50	<10 L
3-Methylphenol & 4-Methylphenol				<10	<10	<10	<10	<10	<10	NA
4,6-Dinitro-2-Methylphenol		-	•*	<10	<10	<10	<10	<10	<50	<10 L
4-Bromophenyl phenyl ether			••	<10	<10	<10	<10	<10	<10	<10
4-Chloro-3-Methylphenol		(••	<10	<10	<10	<10	<10	<20	<10 L
4-Chlorophenyl phenyl ether		<u> 22</u> :		<10	<10	<10	<10	<10	<10	<10
4-Nitrophenol	(1#);	223	**	<10	<10	<10	<10	<10	<50	<10 €
Acenaphthene		**		<10	<10	<10	<10	<10	<10	<10
Acenaphthylene		22)	**	<10	<10	<10	<10	<10	<10	<10
Anthracene				<10	<10	<10	<10	<10	<10	<10
Benzidine		***		<10	<10	<10	<10	<10	<50	<36 U
Benzo(a)anthracene		**	**	<10	<10	<10	<10	<10	<10	<10
Benzo(a)pyrene				<10	<10	<10	<10	<10	<10	<10
Benzo(b)fluoranthene				<10	<10	<10	<10	<10	<10	<10
Benzo(g,h,i)perylene		He.		<10	<10	<10	<10	<10	<10	<10
Benzo(k)fluoranthene				<10	<10	<10	<10	<10	<10	<10
Benzyl Alcohol				<10	<10	<10	<10	<10	<20	.<10
bis(2-Chloroethoxy)methane				<10	<10	<10	<10	<10	<10	<10
bis(2-Chloroethyl)ether				<10	<10	<10	<10	<10	<10	<10
bis(2-Chloroisopropyl)ether			••	<10	<10	<10	<10	<10	<10	<10
bis(2-Ethylhexyl)phthalate				<10	<10	<10	<10	<10	<10	<10
Butyl benzyl phthalate			5	<10	<10	<10	<10	<10	<10	<10
Carbazole				<10	<10	<10	<10	<10	<10	<10
Carbazole Chrysene				<10	<10	<10	<10	<10	- <10	<10
Cresols, Total				NA	NA	NA	NA	NA	NA	<10
				<10	<10	<10	<10	<10	<10	<10
Dibenzo(a,h)anthracene				<10	<10	<10	<10	<10	<10	<10
Dibenzofuran		**	77	<10	<10	<10	<10	<10	<10	<10

Table 4: Treatment Plant Quarterly Effluent Sampling Results

	Sample Location:	ROD	KPDES	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent
	Sample Date:	Requirements	Requirements	1/4/2006	3/29/2006	5/31/2006	9/6/2006	12/15/2006	3/7/2007	6/28/2007
Dimethyl phthalate		-	-	<10	<10	<10	<10	<10	<10	<10
Di-n-butyl phthalate				<10	<10	<10	<10	<10.	<10	<10 .
Di-n-octyl phthalate		44	**	<10	<10	<10	<10	<10	<10	. <10
Juoranthene				<10	<10	<10	<10	<10	<10	<10
Fluorene			**	<10	<10	<10	<10	<10	<10	<10
Hexachlorobenzene			**	<10	<10	<10	<10	<10	<10	<10
Hexachlorobutadiene			**	<10	<10	<10	<10	<10	<10	<10
-lexachlorocyclopentadiene				<10	<10	<10	<10	<10	<10	<10
Hexachloroethane			**	<10	<10	<10	<10	<10	<10	<10
ndeno(1,2,3-cd)pyrene				<10	<10	<10	<10	<10	<10	<10
sophorone				<10	<10	<10	<10	<10	<10	<10
Naphthalene		••		<10	<10	<10	<10	<10	<10	<10
47 1275 200			**	<10						
Nitrobenzene		250			<10	<10	<10	<10	<10	<10
N-Nitrosodimethylamine		11		<10 <10	<10	<10 <10	<10	<10	<10	<10
N-Nitrosodi-n-propylamine		4.5	••		<10	0.000	<10	<10	<10	<10
N-Nitrosodiphenylamine		•		<10	<10	<10	<10	<10	<10	<10
Pentachlorophenol				<10	<10	<10	<10	<10	<50	<10 UJ
Phenanthrene	37			<10	<10	<10	<10	<10	<10	<10
Phenol		365000	5	<10	<10	<10	<10	<10	<10	<10
Рутеле				<10	<10	<10	<10	<10	<10	<10
Pyridine				<10	<10	<10	<10	<10	<10	<10
Total Metals - mg/L	g.									
Antimony		0.062	1.6	< 0.01	< 0.01	0.01	0.026	< 0.01	< 0.01	< 0.01
Arsenic		0.011	0.05	<0.01	< 0.02	< 0.1	<0.1	< 0.01	< 0.01	< 0.01
Barium		0.231		0.08	0.07	0.06	0.07	0.059	0.058	0.04
Beryllium			0.0053	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01
Cadmium			0.0011	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Calcium			**	110	125	84.6	118	118	144	100
Chromium		0.011	0.011	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Copper			0.012	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Iron			1	0.14	0.05	0.09	0.16	< 0.1	0.106	0.09
Lead			0.0032	< 0.02	< 0.02	< 0.01	< 0.01	< 0.1	< 0.01	< 0.01
Magnesium				100	120	81	107	112	144	104
Manganese				0.23	0.06	0.09	0.23	0.02	0.06	0.5
Mercury		**	0.000012	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Nickel			0.16	0.02	0.01	0.01	0.01	0.012	0.013	0.02
Selenium			0.005	< 0.01	< 0.1	< 0.1	< 0.01	< 0.05	< 0.05	< 0.05
Silver			0.00012	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Thallium		0.011	0.04	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Zinc			0.11	0.02	0.03	<0.01	<0.01	0.013	0.01	<0.01
Volatile Organic Compounds - ug/L										
1,1,1,2-Tetrachlorroethane		**		<5	<5	<5	<5	<5	<10	<5
1,1,1-Trichloroethane			14	<5	<5	<5	<5	<5	<5	<5
1,1,2,2-Tetrachloroethane			-	<5	<5	<5	<5	<5	<5	<5
1,1,2-Trichloroethane			5	<5	<5 <5	<5	<5	<5	<5	<5
			5	<5 <5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethane										

Prepared by/Date: RMB 2/19/08 Checked by/Date: CLC 2/20/08

Table 4: Treatment Plant Quarterly Effluent Sampling Results

	Sample Location: Sample Date:	ROD Requirements	KPDES Requirements	Effluent 1/4/2006	Effluent 3/29/2006	Effluent 5/31/2006	Effluent 9/6/2006	Effluent 12/15/2006	Effluent 3/7/2007	Effluen 6/28/200
						9.2	92.0			200
,1-Dichloropropane			0.000	<5	<5	<5	<5	<5	<5	N.A
,1-Dichloropropene			~~	NA	NA	NA	NA	NA	NA	<5
,2,3-Trichlorobenzene		**		<5	<5	<5	<5	<5	<5	NA
,2,3-Trichloropropane			**	<5	<5	<5	<5	<5	<5	<5
,2,4-Trichlorobenzene		186	1000	<5	<5	<5	<5	<5	<10	<5
,2,4-Trimethylbenzene			5.5 6	<5	<5	<5	<5	<5	<5	<5
,2-Dibromo-3-Chloropropane			570	<5	<5	<5	<5	<5	<5	<5
,2-Dibromoethane (Ethylene dibromide)				<5	<5	<5	<5	<5	<5	<5
,2-Dichlorobenzene		See.	5	<5	<5	<5	<5	<5	<10	<5
,2-Dichloroethane			5	<5	<5	<5	<5	<5	<5	<5
,2-Dichloropropane			5	<5	<5	<5	<5	<5	<5	<5
,3,5-Trimethylbenzene				<5	<5	<5	<5	<5	<5	<5
,3-Dichlorobenzene			••	<5	<5	<5	<5	<5	<10	<5
,3-Dichloropropane				<5	<5	<5	<5	<5	<5	<5
,4-Dichlorobenzene			5	<5	<5	<5	<5	<5	<10	<5
,2-Dichloropropane				<5	<5	<5	<5	<.5	<5	<5
-Butanone (Methyl ethyl ketone)		-		<25	<25	<5	<25	<25	<10	<25
-Chloroethyl vinyl ether	3.		-	<5	<5	<5	<5	<5	<5	<5
-Chlorotoluene				<5	<5	<5	<5	<5	<5	<5
-Hexanone				<25	<25	<25	<5	<25	<10	<25
-Phenylbutane				<5	<5	<5	<5	<5	<5	<5
-Chlorotoluene		N-E		<5	<5	<5	<5	<5	<5	<5
-Isopropitoluene (Cymene)				<5	<5	<5	<5	<5	NA	NA.
cetone		-		<25	600	66	<25	<25	<5	<25
crolein		//==		<25	<25	<25	<25	<25	<10	<25
				<5	<5	<5		·<5		S727
acrylonitrile		(***		<5	<5		<5		<10	<5
Benzene			. 5			<5	<5	<5	<5	<5
Bromobenzene				<5	<5	<5	<5 ,	<5	<5	<5
Bromodichloromethane		1.00 M	-	<5	. <5	<5	<5	<5	<5	<5
Bromoform (Tribromomethane)		: ** %		<5	<5	<5	<5	. <5	<5	<5
Bromomethane (Methyl bromide)		-	177	<5	<5	<5	<5	<5	<10	<5
Carbon disulfide				<5	<5	<5	<5	<5	<10	<5
Carbon tetrachloride		***	5 717	<5	<5	<5	<5	<5	<5	<5
Chlorobenzene				<5	<5	<5	<5	<5	<5	<5
Chlorobromomethane			-	<5	<5	<5	<5	<5	<10	<5
Chlorodibromomethane			377	NA	NA	NA	NA	NA	NA	<5
Chloroethane			-77	<5	<5	<5	<5	690	<10	<5
Chloroform		-		<5	. <5	6	<5	<5	<5	<5
Chloromethane (Methyl chloride)				<5	<5	<5	<5	<5	<5	<5
is-1,2-Dichloroethene				<5	<5	<5	<5	<5	<5	<5
is-1,3-Dichloropropene				<5	<5	<5	<5	<5	<5	<5
Dibromodichloromethane				<5	<5	<5	<5	<5	<5	NA
Dibromomethane (Methylene bromide)			-	<5	<5	<5	<5	<5	<5	<5
Dichlorodifluoromethane		••	(97/)	<5	<5	<5	<5	<5	<5	<5
Sthylbenzene			5	<5	<5	<5	<5	<5	<5	<5
enylbenzene Hexachlorobutadiene		55. 22.	<i>3</i> 	<5	<5	<5	<5	<5	<10	
				<5	<5	<5 <5				NA
odomethane					1737/		<5	<5	<5	<5
sopropylbenzene (Cumene)		**		<5	<5	<5	<5	<5	<5	<5
n,p-Xylenes				<10	<10	<10	<10	<10	<5	NA

Table 4: Treatment Plant Quarterly Effluent Sampling Results

	Sample Location: Sample Date:	ROD Requirements	KPDES Requirements	Effluent 1/4/2006	Effluent 3/29/2006	Effluent 5/31/2006	Effluent 9/6/2006	Effluent 12/15/2006	Effluent 3/7/2007	Effluent 6/28/2007
Methyl isobutyl ketone (4-Methyl-2-pentanone)		-	••	<25	<25	<25	<25	<25	<10	<25
Methylene chloride (Dichloromethane)		5870	5	<10	<10	<10	<10	<10	<10	<25
Naphthalene		7.5	33.4	<5	<5	<5	<5	<5	<10	NA
n-Butylbenzene	100	2204 2404 240		<5	<5	<5	<5	<5	<5	<5
n-Propylbenzene				<5	<5	<5	<5	<5	<5	<5
o-Xylene			44	<5	<5	<5	<5	<.5	<5	<5
Styrene			### S	<5	<5	<5	<5	<5	<5	<5
ert-Butylbenzene		1000 1000		<5	<5	<5	<5	<5	<5	<5
Tetrachloroethene (PCE)		500	5	<5	<5	<5	<5	<5	<5	<5
Toluene		22	5	<5	<5	<5	<5	<5	<5	< 5
trans-1,2-Dichloroethene	9	(5-10)		<5	<5	<5	<5	<5	<5	<5
trans-1,3-Dichloropropene		7 <u>88-8</u>		<5	<5	<5	<5	<5	<5	<5
Trichloroethene (TCE)			5	<5	<5	<5	<5	<5	<5	<5
				<5	<5	<5	<5		<5 <5	<5
Trichlorofluoroemthane		144		<5				<5 		
Vinyl Acetate		1808			<5 -2	<5 -2	<5 -2	<5 -2	<10	<5
Vinyl Chloride				<2	<2	<2	<2	<2	<10	<5
Kylenes, Total	22	**	22	NA	NA	NA	NA	NA	NA	<10
GENERAL INORGANICS:					12					
Ammonia Nitrogen - mg/L										
Nitrogen, ammonia (As N)		5 ++ -5		1.8	<0.05	< 0.05	<0.1	0.31	<0.1	<0.08 UJ
Anions - mg/L										
Nitrogen, nitrate		(****)	58	1.2	0.47	1.5	0.17	1.6	1.2	< 0.75
Nitrogen, nitrite		19 50 -3		< 0.15	< 0.15	<1.1	< 0.15	< 0.15	<1.5	2.2
Nitrogen, Nitrite & Nitrate		***		1.2	< 0.5	1.5	< 0.26	1.6	<2.6	2.2
Biochemical Oxygen Demand (BOD) - mg/L Biochemical Oxygen Demand (BOD)				10	<5	<\$	<5	<5	<5	28
Chemical Oxygen Demand (COD) - mg/L							ï			
Chemical Oxygen Demand (COD)		-	34	50	25	310	34	42	<10	36
<u>Cvanide - mg/L</u> Cyanide		-	0.005	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.001
<u>рН - pH Units</u> pH		-		7.5	7.7	7.5	7.8	7	7.6	7.87
Phosphorus - mg/L										
Ortho Phosphorus		1	n _{io} u	< 0.16	< 0.16	2.5	< 0.2	< 0.9	<1.6	<0.2
Phosphorus, Total		22	1224	1.0	0.14	0.12	0.14	0.099	0.074	0.096
Temperature - deg Celcius Temperature		22		NA	NA	NA	NA	NA	NA	22.9
Total Dissolved Solids (TDS) - mg/L Total Dissolved Solids			***	1500	1500	990	1400	1400	1800	1400

Table 4: Treatment Plant Quarterly Effluent Sampling Results

	Sample Location: Sample Date:	ROD Requirements	KPDES Requirements	Effluent 1/4/2006	Effluent . 3/29/2006	Effluent 5/31/2006	Effluent 9/6/2006	Effluent 12/15/2006	Effluent 3/7/2007	Effluent 6/28/2007
<u>Total Kjeldahl Nitrogen - mg/L</u> Total Kjeldahl Nitrogen			10 ##	5	0.6	3.9	0.57	0.74	0.34	1.2 J
Total Organic Carbon (TOC) - mg/L Total Organic Carbon (TOC)			-	19	12.7	13.6	14.4	13.6	12	16
Total Suspended Solids (TSS) - mg/L. Total Suspended Solids		*-	*	<5	<5	<5	<5	<5	<5	<1.7
Furbidity - NTU Furbidity			775	<0.2	1.3	1	<1	<1	<1	«]

Notes:

NA = Not analyzed

UJ = Undetected; the reported quantitation limit is approximate

Laboratory analysis by Microbac Labs Louisville, KY

-- = Regualtory Requirement not established

Analytical methods vary per sampling event and are listed below:

Semi-Volatile Organic Compounds: EPA 625, SW846 8270C

Total Metals - EPA 200.7, Mercury - EPA 245.1

Volatile Organic Compounds: SW846 8260, SW846 8260B

General Inorganics:

Ammonia Nitrogen - EPA 350.1, EPA 350.2, SM 4500

Anions - EPA 300.0, EPA 353.3, EPA 354.1

Biological Oxygen Demand (BOD) - EPA 405.1, SM 5210B

Chemical Oxygen Demand (COD) - EPA 410.1, EPA 410.4, SM 5220D

Cyanide - EPA 335.2, EPA 335.4

pH - EPA 150.1, SM 4500

Phosphorus - EPA 365.1, EPA 365.3

Temperature - EPA 170.1, SM 2550B

Total Dissolved Solids (TDS) - EPA 160.1, 1-1750-85

Total Kjeldahl Nitrogen - EPA 351.3, SM 4500

Total Organic Carbon (TOC) - SM 5310B, SM 5310C, SW846 9060

Total Suspended Solids (TSS) - EPA 160.2, 1-3765-85

Turbidity - EPA 180.1

Table 4: Treatment Plant Quarterly Effluent Sampling Results

	Sample Location:	ROD	KPDES	Effluent	Effluent
	Sample Date:	Requirements	Requirements	9/14/2007	12/17/2007
Semi-Volatile Organic Compounds - ug/L					
1,2,4-Trichlorobenzene		••	22	410	-10
(1) [1] (1) [2] [1] (1) [1] (1) [1] (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)			5	<10	<10
1,2-Dichlorobenzene		**		NA	<10
1,3-Dichlorobenzene				NA	<10
1,4-Dichlorobenzene			5	NA	<10
2,4,5-Trichlorophenol				<10	<10
2,4,6-Trichlorophenol		**		<10	<10
2,4-Dichlorophenol			re :	<10	<10
2,4-Dimethylphenol		4570	5	<10	<10
2,4-Dinitrophenol				<50 UJ	<\$1 UJ
2,4-Dinitrotoluene			HH.	<10	<10
2,6-Dinitrotoluene				<10	<10
2-Chloronaphthalene			7*	<10	<10
2-Chlorophenol		23	777	<10	<10
2-Methylnaphthalene		**		<10	<10
2-Methylphenol (o-Cresol)			5.	<10	<10
2-Nitrophenol				<10	<10
3,3'-Dichlorobenzidine		**		<50 UJ	<51 UJ
3-Methylphenol & 4-Methylphenol				NA	NA
4,6-Dinitro-2-Methylphenol			-	<50 UJ	<51 UJ
4-Bromophenyl phenyl ether				<10	<10
4-Chloro-3-Methylphenol				<20 UJ	<20 UJ
4-Chlorophenyl phenyl ether			**	<10	<10
4-Nitrophenol				<50 UJ	<51 UJ
Acenaphthene				<10	<10
Acenaphthylene				<10	<10
Anthracene			**	<10	<10
Benzidine		**		<50 UJ	<51 UJ
Benzo(a)anthracene				<10	<10
Benzo(a)pyrene		-		<10	<10
Benzo(b)fluoranthene				<10	<10
Benzo(g,h,i)perylene	4			<10	<10
Benzo(k)fluoranthene			_	<10	<10
Benzyl Alcohol				<20 UJ	<20 UJ
bis(2-Chloroethoxy)methane				<10	<10
bis(2-Chloroethyl)ether			-	<10	<10
bis(2-Chloroisopropyl)ether				<10	<10
bis(2-Ethylhexyl)phthalate				<10	<10
			5		3.55
Butyl benzyl phthalate				<10	<10
Carbazole		200	1989	<10	<10
Chrysene		**		<10	<10
Cresols, Total			**	<10	<10
Dibenzo(a,h)anthracene				<10	<10
Dibenzofuran			3 65 3	<10	<10
Diethyl Phthalate			**	<10	<10

Table 4: Treatment Plant Quarterly Effluent Sampling Results

(4)	Sample Location: Sample Date:	ROD Requirements	KPDES	Effluent 9/14/2007	Effluent 12/17/2007
	Sample Date:	Requirements	Requirements	3/14/2007	12/1//2007
Dimethyl phthalate				<10	<10
Di-n-butyl phthalate				<10	<10
Di-n-octyl phthalate				<10	<10
Fluoranthene				<10	<10
Fluorene		**		<10	<10
Hexachlorobenzene				<10	<10
Hexachlorobutadiene				<10	<10
Hexachlorocyclopentadiene			**	<10	<10
Hexachloroethane			**	<10	<10
Indeno(1,2,3-cd)pyrene		**	**	<10	<10
Isophorone	22		-	<10	<10
Naphthalene		74		<10	<10
Nitrobenzene		250		<10	<10
N-Nitrosodimethylamine		_		<10	<10
N-Nitrosodi-n-propylamine		11	-	<10	<10
N-Nitrosodiphenylamine			**	<10	<10
Pentachlorophenol		**		<50 U3	<51 UJ
Phenanthrene				<10	<10
Phenol		365000	5	<10	<10
Pyrene			-	<10	<10
Pyridine		-	Carrier .	<10	<10
Total Metals - mg/L	*				
Antimony		0.062	1.6	< 0.005	< 0.005
Arsenic		0.011	0.05	<0.1	<0.1
Barium		0.231	0.03	0.05	0.04
Beryllium		0.251	0.0053	< 0.005	< 0.005
Cadmium			0.0011	< 0.005	< 0.005
Calcium			0.0011	120	136
Chromium		0.011	0.011	< 0.005	< 0.005
Copper		-	0.012	< 0.005	< 0.005
Iron			1	0.1	0.1
Lead			0.0032	< 0.005	< 0.005
Magnesium		100 T	0.0032	110	128
Manganese		2.2		1.6	0.39
Mercury			0.000012	< 0.0002	<0.0002
Nickel			0.16	0.02	0.01
Selenium		-	0.005	< 0.05	< 0.025
Silver	•		0.00012	< 0.005	< 0.005
Thallium		0.011	0.04	< 0.05	< 0.025
Zinc			0.11	0.03	< 0.005
Volatile Organic Compounds - ug/L					
1,1,1,2-Tetrachlorroethane		-		<5	<5
1,1,1-Trichloroethane				<5	<5
1,1,2,2-Tetrachloroethane		**		<5	<5
1,1,2-Trichloroethane		**	5	<5	<5
1,1-Dichloroethane			5	<5	<5
1,1-Dichloroethene	, and the second	**	5	<5	<5

Table 4: Treatment Plant Quarterly Effluent Sampling Results

	Sample Location:	ROD	KPDES	Effluent	Effluent
	Sample Date:	Requirements	Requirements	9/14/2007	12/17/2007
1,1-Dichloropropane		**		NA	NA
1,1-Dichloropropene				<5	<5
1,2,3-Trichlorobenzene			42	NA	NA
1,2,3-Trichloropropane			22	<5	<5
1,2,4-Trichlorobenzene				<5	<5
1,2,4-Trimethylbenzene				<5	<5
1,2-Dibromo-3-Chloropropane				<5	<5
1,2-Dibromoethane (Ethylene dibromide)			45	<5	<5
1.2-Dichlorobenzene			5	<5	<5
1,2-Dichloroethane			5	<5	<5
1,2-Dichloropropane			5	<5	<5
1,3,5-Trimethylbenzene			**	<5	<5
1,3-Dichlorobenzene				<5	<5
1,3-Dichloropropane		-	**	<5	<5
1,4-Dichlorobenzene			5	<5	<5
2,2-Dichloropropane				<5	<5
2-Butanone (Methyl ethyl ketone)				<25	26
2-Chloroethyl vinyl ether				<5	<5
2-Chlorotoluene				<5	<5
2-Hexanone	190		**	<25	<25
2-Phenylbutane		-		<5	<5
4-Chlorotoluene				<5	<5
4-Isopropitoluene (Cymene)		1800.0 (1800.0)		NA	NA
Acetone			1576	<25	<25
Acrolein		-		<25	<25
Acrylonitrile	*)	-		<5	<5
Benzene			5	<5	<5
Bromobenzene		-		<5	<5
Bromodichloromethane		(and)	<u></u> .	<5	<s< td=""></s<>
Bromoform (Tribromomethane)				<5	<5
Bromomethane (Methyl bromide)				<5	<5
Carbon disulfide				<5	<5
Carbon tetrachloride				<5	<5
Chlorobenzene		11.00 M		<5	<5
Chlorobromomethane				<5	<5
Chlorodibromomethane				<5	<5
Chloroethane				<5	<5
Chloroform			-	<5	<5
				<5	<5
Chloromethane (Methyl chloride)				<5	<5
cis-1,2-Dichloroethene			••		
cis-1,3-Dichloropropene				<5	<5
Dibromodichloromethane		13	**	NA	NA
Dibromomethane (Methylene bromide)				<5	<5
Dichlorodifluoromethane		77		<5	<5
Ethylbenzene			5	<5	<5
Hexachlorobutadiene			**	NA	NA
Iodomethane		7.7		<5	<5
Isopropylbenzene (Cumene)		***		<5	<5
m,p-Xylenes				NA	NA

Table 4: Treatment Plant Quarterly Effluent Sampling Results

8	Sample Location: Sample Date:	ROD Requirements	KPDES Requirements	Effluent 9/14/2007	Effluent 12/17/2007
e)					
Methyl isobutyl ketone (4-Methyl-2-pentanone)				<25	<25
Methylene chloride (Dichloromethane)		5870	5	<10	<10
Naphthalene		##S	((***)	NA	NA
n-Butylbenzene			6 00 8	<5	<5
n-Propylbenzene			Stat	<5	< 5
o-Xylene			1988	<5	<5
Styrene		.55		<5	<5
tert-Butylbenzene				<5	<5
Tetrachloroethene (PCE)			5	<5	<5
Toluene		(1422)	5	<5	<5
trans-1,2-Dichloroethene		122		<5	<5
trans-1,3-Dichloropropene		122	200 SA	<5	<5
Trichloroethene (TCE)		22	5	<5	<5
Trichlorofluoroemthane		122	## ##	<5	<5
Vinyl Acetate		122	<u> </u>	<5	<5
Vinyl Chloride				<2	<2
Xylenes, Total				<10	<10
GENERAL INORGANICS:					
Ammonia Nitrogen - mg/L		(4)			
Nitrogen, ammonia (As N)		200	**	<0.1	0.2
Anions - mg/L			·		
Nitrogen, nitrate		3 11. 94		<2	< 0.15
Nitrogen, nitrite		M a rk	ee	< 0.5	0.55
Nitrogen, Nitrite & Nitrate				<0.5.	< 0.26
Biochemical Oxygen Demand (BOD) - mg/L					
Biochemical Oxygen Demand (BOD)		77		<5	<5
Chemical Oxygen Demand (COD) - mg/L					<10
Chemical Oxygen Demand (COD)		•	34	54	<10
<u>Cyanide - mg/L</u> Cyanide		V	0.005	<0.01	< 0.005
		***	0.005	N.01	<0.003
pH - pH Units				<u> </u>	
pH			-	7.52	8.18 J
Phosphorus - mg/L					2.0
Ortho Phosphorus		**		<0.2	NA
Phosphorus, Total			(a)	0.13	0.089
Temperature - deg Celcius				528 AV	
Temperature		•••	**	21.3	20
Total Dissolved Solids (TDS) - mg/L				1500	1.400
Total Dissolved Solids		125	422	1700	1400

Table 4: Treatment Plant Quarterly Effluent Sampling Results

N.	Sample Location: Sample Date:	ROD Requirements	KPDES Requirements	Effluent 9/14/2007	Effluent 12/17/2007
<u>Total Kjeldahl Nitrogen - mg/L</u> Total Kjeldahl Nitrogen	9		See:	1.2	0.72
Total Organic Carbon (TOC) - mg/L Total Organic Carbon (TOC)		.55F	₩.	26	NA
Total Suspended Solids (TSS) - mg/L Total Suspended Solids		es.	55 78	<5	5
<u>Turbidity - NTU</u> Turbidity			77.	<1	1.1

Notes:

NA = Not analyzed

UJ = Undetected; the reported quantitation limit is approximate Laboratory analysis by Microbac Labs Louisville, KY

-- = Regualtory Requirement not established

Analytical methods vary per sampling event and are listed below:

Semi-Volatile Organic Compounds: EPA 625, SW846 8270C

Total Metals - EPA 200.7, Mercury - EPA 245.1

Volatile Organic Compounds: SW846 8260, SW846 8260B

General Inorganics:

Ammonia Nitrogen - EPA 350.1, EPA 350.2, SM 4500

Anions - EPA 300.0, EPA 353.3, EPA 354.1

Biological Oxygen Demand (BOD) - EPA 405.1, SM 5210B

Chemical Oxygen Demand (COD) - EPA 410.1, EPA 410.4, SM 5220D

Cyanide - EPA 335.2, EPA 335.4

pH - EPA 150.1, SM 4500

Phosphorus - EPA 365.1, EPA 365.3

Temperature - EPA 170.1, SM 2550B

Total Dissolved Solids (TDS) - EPA 160.1, 1-1750-85

Total Kjeldahl Nitrogen - EPA 351.3, SM 4500

Total Organic Carbon (TOC) - SM 5310B, SM 5310C, SW846 9060

Total Suspended Solids (TSS) - EPA 160.2, I-3765-85

Turbidity - EPA 180.1

Table 2
Treatment Plant Quarterly Effluent Sampling Results 2006

OATE COLLECTED: /OLATILE ORGANIC COMPOUNDS PARAMETERS DICHLORODIFLUOROMETHANE //INYL CHLORIDE	Requirements	Requirements	3/18/05	6/25/05	9/9/05	1/6/06	03/29/06	5/31/06	9/6/06	ADIATION
PARAMETERS DICHLORODIFLUOROMETHANE VINYL CHLORIDE	S BY SW8260						00/20/00	3/3/1/00	310100	12/15/06
ARAMETERS ICHLORODIFLUOROMETHANE INYL CHLORIDE	S BY SWAZEO									
ICHLORODIFLUOROMETHANE INYL CHLORIDE			Science -							
/INYL CHLORIDE	UNITS		8 8 20	A 3.4 3.4 M	Ann a				128	
	ug/L	1		<5		<5		<5	<5 <5	
YUL ODONETHANE	ug/L	5	<5	<5		<5		<2		38
CHLOROMETHANE	ug/L		<5	<5	<5 <5 <5	<5	<5	< <u>5</u> < <u>5</u> ,	<5	
BROMOMETHANE	ug/L	The second secon	<5	<5	<5.	<5	<5.	<5 ₁	<5	
CHLOROETHANE	.ug/L	1	<51	<5	<5	<5	<5:	<5	<5	46 354
RICHLOROFLUOROMETHANE	·ug/L	A Service Company of the	<5	<5	<51	<5		<5	<5'	1881
,1-DICHLOROETHYLENE	ug/L	18 (4 (18)	<5	<5		<5		<5;	<5	5 (5)
METHYLENE CHLORIDE	lug/L		<5	<10		<5		<10	<10	******
CETONE		· · · · · · · · · · · · · · · · · · ·	<5	<25		<25	The second secon	66	310	
	tug/L		<5	<25		<25		<25	<25	
CROLEIN	ug/L	a same a same	<5				9		<5'	
ODOMETHANE	ug/L		X 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	< <u>5</u>	<u><5</u> ;	<5		<5;		
CARBON DISULFIDE	ug/L	1	<5	<5		. <5		<5	<5	
ACRYLONITRILE	ug/L	1	<5	<5		<5	was promise to the first of	<5	<5;	market or
RANS-1,2-DICHLOROETHYLENE	ug/L		<5	<5		<5			<5	
,1-DICHLOROETHANE	ug/L .		<5;	<5		<5		<5	<5	
/INYL ACETATE	ug/L	-,	<5	<5	<5	<5		<5:	<5	2000 SEE
P-BUTANONE (MEK)	ug/L	1 5	<50.	<5	<5	<5	<25.	<5	560	
IS-1,2-DICHLOROETHYLENE	ug/L	5	<5	<5	<5	<5		<5	<5	8 550 816
BROMOCHLOROMETHANE	ug/L	a marine and Section 1	<5	<5 <5	<5	<5		<5.	<5	5 12 100.00
CHLOROFORM	.ug/L	* A ** ** ** ** ** ** ** ** ** ** ** **	<5.	<5	<5	<5		6:	<5	1500 E (80
	ug/L	\$100 KB K 10 (\$1000 KB 10)	, , , , , , , , , , , , , , , , , , ,	\^\ <5		· · · · · · · · · · · · · · · · · · ·	Company of the compan	<5.	<5 ¹	25 250 35
2,2-DICHLOROPROPANE	ug/L	 		· · · · · · · · · · · · · · · · · · ·			After the second property and the			
1,1,1-TRICHLOROETHANE	ug/L		\$5			<5			<5	
,1-DICHLOROPROPYLENE	ug/L		12:	<5	TO A STREET THE PARTY OF THE PA	<5		<5	<5	
CARBON TETRACHLORIDE	ug/L		<5	<5	American and a second	<5		< 5.	<5	
BENZENE	·ug/L		<5	<5		<5			<5	
,2-DICHLOROETHANE	ug/L	5	<5	<5	<51	<5	<5	<5:	<5	
RICHLOROETHYLENE	ug/L	E SAME SAME SAME SAME SAME SAME SAME SAM	<5	<5	<5	<5	. <5	<5	<5	100,000 0
DIBROMOMETHANE	ug/L	T	<5,	<5	<5	<5	<51	<5	<5	
1,2-DICHLOROPROPANE	ug/L 5870	5	<5	<5		<5	<5	<5	<5	2 332237 5
BROMODICHLOROMETHANE	ug/L		<5.	<5		<5		<5 [']	<5	(4,
2-CHLOROETHYL VINYL ETHER				<5		<10			<5	
	.ug/L		<u>~5.</u> <5			<5			<51	
CIS-1,3-DICHLOROPROPYLENE	ug/L				ζ5.	TO A COUNTY OF THE ACC		C 5	<0	
4-METHYL-2-PENTANONE (MIBK)	ug/L	<u> </u>	16	<25		<25			<25	
TOLUENE	ug/L	. 5	<5	<5	the second comment	<5			< <u>5</u> <5	. (N. P. CH. P. P.
FRANS-1,3-DICHLOROPROPYLEN	Eug/L		<5 ¹	<5		<5			_<5	
1,1,2-TRICHLOROETHANE	ug/L	5	<5	<5	<5	<5		<5	<5	
1,3-DICHLOROPROPANE	lug/L		<5	< 5	<5	<5	<5	<5	<5,	i
DIBROMOCHLOROMETHANE	ug/L		<5	<5	5. <5	<5	<5	<5.	<5:	
1,2-DIBROMOETHANE (EDB)	ug/L		<5	·· <{		<		< 5,	<5;	
TETRACHLOROETHYLENE	ug/L		<5	······································		<		<5	<5;	CALL BY
2-HEXANONE		de anno en en	21	<25		< !		<25	<5	 (80 (80)
	_ug/L	<u> </u>		· · · · · · · · · · · · · · · · · · ·						
,1,1,2-TETRACHLOROETHANE	lug/L	LEADER BARRES N	<5	CARROLL STREET, CAMPAGE	The same of the sa	- · · · · · · · · · · · · · · · · · · ·	US CORP TO THE	<5	<5	* * *
HLOROBENZENE	ug/L		<5 ′			<5	· <5	<5	<5	***
I-CHLOROHEXANE	/ug/L	Lo seriem series a	<5	<5	<5	<5		<5	<5	N N N N
THYLBENZENE	ug/L	T	<5	<(<5			14	1222000
M-XYLENE / P-XYLENE	ug/L	1	<10	<10	<10	<10	<10	<10	<10	10 100 100 100
D-XYLENE	lug/L	1	<5	<{	<5	<5	<5	<5	<5	0.00.00.00
STYRENE	lug/L		<5	<{		<			<5	
BROMOFORM	ug/L	·	<5	<		</td <td></td> <td></td> <td><5</td> <td></td>			<5	
1,2,3-TRICHLOROPROPANE	The second secon	100000	<5.			<			<5	
1,2,0-1 RIUTLURUPRUPAINE	ug/L	10	~ 0.	</td <td></td> <td><!--</td--><td>12 mm</td><td></td><td></td><td></td></td>		</td <td>12 mm</td> <td></td> <td></td> <td></td>	12 mm			

Table 2
Treatment Plant Quarterly Effluent Sampling Results continued...

SAMPLE MONTH:	15-55-	ROD	KPDES	MARCH	JUNE	SEPT	DEC	MARCH	JUNE	SEPT	Jan
DATÉ COLLECTED:	2 2	Requirements	Requirements	3/18/05	6/25/05	9/9/05	1/6/06	3/29/06	5/31/06	9/6/06	12/15/05
VOLATILE ORGANIC COMPOUND	S BY SV	V8260 continue		5 A #	T.0	74					20.100
BROMOBENZENE	(ug/L			<5	<5	<5	<5	<5! <5	<5`	<5	<
TRANS-1,4-DICHLORO-2-BUTENE	ug/L		V.	<5	<5¦	<5	<5	<5	<5	<5	<
N-PROPYLBENZENE	ug/L			<5	<5	<5	<5	<5!	<5	· <5	<
1.1.2.2-TETRACHLOROETHANE	ug/L			<5	<51	<5,	<5	<5·	<5	<5	<
2-CHLOROTOLUENE	ug/L	16		<5	<5°	<5	<5		<5	<5	<
3-CHLOROTOLUENE	ug/L			<5	<5 ⁻	<5	<5		<5	······<5	
4-CHLOROTOLUENE	ug/L	F		<5	<5	<51	<5		<5	<5	
1.3.5-TRIMETHYLBENZENE				· · · · · · · · · · · · · · · · · · ·	 <5	<5	<5		<5	<5	an a mary
TERT-BUTYLBENZENE	ug/L	- 23	A BA B S	<5		<5				<51 <51	un en P
	ug/L			200.0	<5.		. <5	<5	<5		
1.2.4-TRIMETHYLBENZENE	ug/L		[< 5	<5	<5	<5		<5:	<5	
SEC-BUTYLBENZENE	ug/L		l	<5	<5:	<5	<5			<5	
1,3-DICHLOROBENZENE	ug/L			<5	<5;	<5	<5		<5	<5	
1,4-DICHLOROBENZENE	ug/L		1	<5	<5]	<5,	<5		<5	< 5 ;	:
4-ISOPROPYLTOLUENE	ug/L			<5	<5!	< 5i	<5	<5	<5	<5	
1,2-DICHLOROBENZENE	'ug/L		. 5	<5	<5	<5	<5		<5∶	< 5	
N-BUTYLBENZENE	·ug/L			<5	<5 <5	<51	<5	<5	< 5i	<5,	
1,2-DIBROMO-3-CHLOROPROPAN	E ug/L		5 .	<5	<5.	<51	<5		<5	<5	*
1,2,4-TRICHLOROBENZENE	ug/L	- j:		<5	<5.	<5	<5		<5	<5	
NAPHTHALENE	ug/L		n 9 9 "	<5	<5,	<5	<5		11.	<5	
HEXACHLOROBUTADIENE	:ug/L	-I		<5	<5;	<5	<5		<5	<5:	
1,2,3-TRICHLOROBENZENE	ug/L		Y	<5	- · · · <5	<5	<5		9	<5	1200
1. Soul formation resolution for	The same and			85%	80%	98%	96%	95%	89%:	130%	116
	Marie /	4570			00 /0		30 /0	9576	09 /0.	130 /0:	110
	ug/L	4570	10		0.79/ (1420/	9.40/	1000/	040/	010/	00
TOL-D8 SURROGATE RECOVERY	ug/L	4570	10	87%	97%	113%	84% 92%	(94%	91%	
DCA SURROGATE RECOVERY TOL-D8 SURROGATE RECOVERY BFB SURROGATE RECOVERY		4570	10		97%; 86%;	113% 107%	84% 92%	(94%¦ 102%	91% 100%	
TOL-D8 SURROGATE RECOVERY BFB SURROGATE RECOVERY	ug/L ug/L	4570 BY SW8270	10	87%				(a frage manage	
TOL-D8 SURROGATE RECOVERY BFB SURROGATE RECOVERY SEMI-VOLATILE ORGANIC COMP	ug/L ug/L DUNDS	4570 BY SW8270	10	87% 87%	86%	107%	92%	100%	102%	100%	106
TOL-D8 SURROGATE RECOVERY BFB SURROGATE RECOVERY SEMI-VOLATILE ORGANIC COMPO PYRIDINE	ug/L ug/L OUNDS ug/L	4570 BY SW8270	10	87% 87% ND	86% ND1	107%	92%	100%	102%	100% <10	99 106
TOL-D8 SURROGATE RECOVERY BFB SURROGATE RECOVERY SEMI-VOLATILE ORGANIC COMPO PYRIDINE N-NITROSODIMETHYLAMINE	ug/L ug/L DUNDS ug/L ug/L	4570 BY SW8270	10	87% 87% ND ND	86% ND ND	107% <10 <10	92% <10 <10	100% <10 <10	102% <10 <10	100% <10 <10	106
TOL-D8 SURROGATE RECOVERY BFB SURROGATE RECOVERY SEMI-VOLATILE ORGANIC COMPOPYRIDINE N-NITROSODIMETHYLAMINE BIS(2-CHLOROETHYL)ETHER	ug/L ug/L DUNDS ug/L ug/L ug/L	4570 BY SW8270	10	87% 87% ND ND <20	86% ND ND <20	107% <10 <10 <10	92% <10 <10 <10	100% <10 <10 <10	102% <10 <10 <10	100% <10 <10 <10	106
TOL-D8 SURROGATE RECOVERY BFB SURROGATE RECOVERY SEMI-VOLATILE ORGANIC COMPOPYRIDINE N-NITROSODIMETHYLAMINE BIS(2-CHLOROETHYL)ETHER PHENOL	ug/L ug/L DUNDS ug/L ug/L ug/L	4570 BY SW8270	10	87% 87% ND ND <20 <10	86% ND ND <20 <10	107% <10 <10 <10 <10	92% <10 <10 <10 <10	100% <10 <10 <10 <10	<102% <10 <10 <10 <10 <10 <10	<100% <10 <10 <10 <10	106
TOL-D8 SURROGATE RECOVERY BFB SURROGATE RECOVERY SEMI-VOLATILE ORGANIC COMPOUNCE PYRIDINE N-NITROSODIMETHYLAMINE BIS(2-CHLOROETHYL)ETHER PHENOL 2-CHLOROPHENOL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	BY SW8270	10	87% 87% ND ND <20 <10	86% ND ND <20 <10 <10	107% <10 <10 <10 <10 <10	92% <10 <10 <10 <10 <10 <10 <10 <10	100% <10 <10 <10 <10 <10	<102% <10 <10 <10 <10 <10 <10 <10 <10	<100% <10 <10 <10 <10 <10	106
TOL-D8 SURROGATE RECOVERY BFB SURROGATE RECOVERY SEMI-VOLATILE ORGANIC COMPOUNCE PYRIDINE N-NITROSODIMETHYLAMINE BIS(2-CHLOROETHYL)ETHER PHENOL 2-CHLOROPHENOL 1,3-DICHLOROBENZENE	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	4570 BY SW8270	10	87% 87% ND ND <20 <10 <10	86% NDI ND <20 <10 <10	107% <10 <10 <10 <10 <10 <10	92% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	100% <10 <10 <10 <10 <10 <10 <10 <10	<102% <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	<100% <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	106
TOL-D8 SURROGATE RECOVERY BFB SURROGATE RECOVERY SEMI-VOLATILE ORGANIC COMPOUNT OF THE PROPERTY OF THE PROPER	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	4570 BY SW8270	10	87% 87% ND ND <20 <10 <10 <10	86% NDI ND <20 <10 <10 <10 <10	107% <10 <10 <10 <10 <10 <10 <10 <10	92% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	100% <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	102% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	100% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	106
TOL-D8 SURROGATE RECOVERY BFB SURROGATE RECOVERY SEMI-VOLATILE ORGANIC COMPOUNT PYRIDINE N-NITROSODIMETHYLAMINE BIS(2-CHLOROETHYL)ETHER PHENOL 2-CHLOROPHENOL 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE 1,2-DICHLOROBENZENE	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	4570 BY SW8270	10	87% 87% ND ND <20 <10 <10 <10 <10 <10	86% NDI ND <20 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	<10/ <10/ <10 <10 <10 <10 <10 <10 <10 <10	92% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	100% <100	102% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	100% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	106
TOL-D8 SURROGATE RECOVERY BFB SURROGATE RECOVERY SEMI-VOLATILE ORGANIC COMPI PYRIDINE N-NITROSODIMETHYLAMINE BIS(2-CHLOROETHYL)ETHER PHENOL 2-CHLOROPHENOL 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE 1,2-DICHLOROBENZENE BENZYL ALCOHOL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	4570 BY SW8270	10	87% 87% ND ND <20 <10 <10 <10	86% NDI ND <20 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	107% <10 <10 <10 <10 <10 <10 <10 <10	92% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	100% <100	102% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	100% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	106
TOL-D8 SURROGATE RECOVERY BFB SURROGATE RECOVERY SEMI-VOLATILE ORGANIC COMPOUNT PYRIDINE N-NITROSODIMETHYLAMINE BIS(2-CHLOROETHYL)ETHER PHENOL 2-CHLOROPHENOL 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE 1,2-DICHLOROBENZENE	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	4570 BY SW8270	10	87% 87% ND ND <20 <10 <10 <10 <10 <10	86% NDI ND <20 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	<10/ <10/ <10 <10 <10 <10 <10 <10 <10 <10	92% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	100% <100	102% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	100% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	106
TOL-D8 SURROGATE RECOVERY BFB SURROGATE RECOVERY SEMI-VOLATILE ORGANIC COMPOUNTS PYRIDINE N-NITROSODIMETHYLAMINE BIS(2-CHLOROETHYL)ETHER PHENOL 2-CHLOROPHENOL 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE 1,2-DICHLOROBENZENE BENZYL ALCOHOL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	BY SW8270		87% 87% ND ND <20 <10 <10 <10 <10 <10 <10	86% NDI ND <20 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	107% <10 <10 <10 <10 <10 <10 <10 <10	92% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	100% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	102% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	100% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	106
TOL-D8 SURROGATE RECOVERY BFB SURROGATE RECOVERY SEMI-VOLATILE ORGANIC COMPOUNT OF THE PRINCE OF TH	Ug/L Ug/L Ug/L Ug/L Ug/L Ug/L Ug/L Ug/L	4570 BY SW8270	10	87% 87% ND ND <20 <10 <10 <10 <10 <10 <10	86% NDI ND <20 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	107% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	92% <100 <100 <100 <100 <100 <100 <100 <1	100% <100 <100 <100 <100 <100 <100 <100	102% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	100% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	106
TOL-D8 SURROGATE RECOVERY BFB SURROGATE RECOVERY SEMI-VOLATILE ORGANIC COMPIPYRIDINE N-NITROSODIMETHYLAMINE BIS(2-CHLOROETHYL)ETHER PHENOL 2-CHLOROPHENOL 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE 1,2-DICHLOROBENZENE BENZYL ALCOHOL BIS(2-CHLOROISOPROPYL)ETHEF 2-METHYLPHENOL HEXACHLOROETHANE	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	4570 BY SW8270	10	87% 87% ND ND <20 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	86% NDI ND <20 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	107% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	92% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	100% <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <	102% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	100% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	106
TOL-D8 SURROGATE RECOVERY BFB SURROGATE RECOVERY SEMI-VOLATILE ORGANIC COMPOPYRIDINE N-NITROSODIMETHYLAMINE BIS(2-CHLOROETHYL)ETHER PHENOL 2-CHLOROPHENOL 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE 1,2-DICHLOROBENZENE BIS(2-CHLOROBENZENE BIS(2-CHLOROSOPROPYL)ETHEF 2-METHYLPHENOL HEXACHLOROETHANE N-NITROSODI-N-PROPYLAMINE	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	4570 BY SW8270	10	87% 87% ND ND <20 <10 <10 <10 <10 <10 <10 <10 <10 <10 <210 <2	86% NDI ND ND <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	107% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	92% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	100% <100 <100 <100 <100 <100 <100 <100	102% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	100% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	106
TOL-D8 SURROGATE RECOVERY BFB SURROGATE RECOVERY SEMI-VOLATILE ORGANIC COMPOUNCE PYRIDINE N-NITROSODIMETHYLAMINE BIS(2-CHLOROETHYL)ETHER PHENOL 2-CHLOROPHENOL 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE 1,2-DICHLOROBENZENE BENZYL ALCOHOL BIS(2-CHLOROISOPROPYL)ETHEF 2-METHYLPHENOL HEXACHLOROETHANE N-NITROSODI-N-PROPYLAMINE 3&4-METHYLPHENOL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	4570 BY SW8270		87% 87% 87% ND ND <20 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	86% NDD ND <20 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	107% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	92% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	100% <100 <100 <100 <100 <100 <100 <100	102% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	100% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	106
TOL-D8 SURROGATE RECOVERY BFB SURROGATE RECOVERY SEMI-VOLATILE ORGANIC COMPI PYRIDINE N-NITROSODIMETHYLAMINE BIS(2-CHLOROETHYL)ETHER PHENOL 2-CHLOROPHENOL 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE 1,2-DICHLOROBENZENE BENZYL ALCOHOL BIS(2-CHLOROISOPROPYL)ETHEF 2-METHYLPHENOL HEXACHLOROETHANE N-NITROSODI-N-PROPYLAMINE 3&4-METHYLPHENOL NITROBENZENE	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	4570 BY SW8270	10	87% 87% ND ND <20 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	86% NDD ND <20 <100 <10 <10 <10 <10 <10 <10 <10 <10 <	107% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	92% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	100% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	102% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	100% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	106
TOL-D8 SURROGATE RECOVERY BFB SURROGATE RECOVERY SEMI-VOLATILE ORGANIC COMPOUNCE PYRIDINE N-NITROSODIMETHYLAMINE BIS(2-CHLOROETHYL)ETHER PHENOL 2-CHLOROPHENOL 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE 1,2-DICHLOROBENZENE BENZYL ALCOHOL BIS(2-CHLOROISOPROPYL)ETHEF 2-METHYLPHENOL HEXACHLOROETHANE N-NITROSODI-N-PROPYLAMINE 3&4-METHYLPHENOL NITROBENZENE SOPHORONE	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	4570 BY SW8270	10	87% 87% ND ND <20 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	86% NDI ND <20 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	107% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	92% <100 <100 <100 <100 <100 <100 <100 <1	100% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	102% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	100% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	106
TOL-D8 SURROGATE RECOVERY BFB SURROGATE RECOVERY SEMI-VOLATILE ORGANIC COMPOUNCE PYRIDINE N-NITROSODIMETHYLAMINE BIS(2-CHLOROETHYL)ETHER PHENOL 2-CHLOROPHENOL 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE 1,2-DICHLOROBENZENE BENZYL ALCOHOL BIS(2-CHLOROISOPROPYL)ETHEF 2-METHYLPHENOL HEXACHLOROETHANE N-NITROSODI-N-PROPYLAMINE 384-METHYLPHENOL NITROSODI-N-PROPYLAMINE NITROSENZENE ISOPHORONE 2-NITROPHENOL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	4570 BY SW8270	10	87% 87% 87% ND ND <20 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	86% NDI NDI (20) (40)	107% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	92% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	100% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	102% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	100% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	106
TOL-D8 SURROGATE RECOVERY BFB SURROGATE RECOVERY SEMI-VOLATILE ORGANIC COMPOUNT OF THE PRINT OF	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	4570 BY SW8270	10	87% 87% 87% ND ND <20 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	86% NDI NDC <20 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	107% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	92% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	100% <100 <100 <100 <100 <100 <100 <100	102% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	100% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	106
TOL-D8 SURROGATE RECOVERY BFB SURROGATE RECOVERY SEMI-VOLATILE ORGANIC COMPOUNCE PYRIDINE N-NITROSODIMETHYLAMINE BIS(2-CHLOROETHYL)ETHER PHENOL 2-CHLOROPHENOL 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE 1,2-DICHLOROBENZENE BENZYL ALCOHOL BIS(2-CHLOROISOPROPYL)ETHEF 2-METHYLPHENOL HEXACHLOROETHANE N-NITROSODI-N-PROPYLAMINE 384-METHYLPHENOL NITROBENZENE 15OPHORONE 2-NITROPHENOL 2,4-DIMETHYLPHENOL BIS(2-CHLOROETHOXY)METHANE	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	4570 BY SW8270	10	87% 87% 87% ND ND <20 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	86% NDI ND <0 <10 <10 <10 <10 <10 <10 <10 <10 <10	107% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	92% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	100% <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	102% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	100% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	106
TOL-D8 SURROGATE RECOVERY BFB SURROGATE RECOVERY SEMI-VOLATILE ORGANIC COMPOSITION OF THE PHYRIDINE N-NITROSODIMETHYLAMINE BIS(2-CHLOROETHYL)ETHER PHENOL 2-CHLOROPHENOL 1,3-DICHLOROBENZENE 1,2-DICHLOROBENZENE 1,2-DICHLOROBENZENE BENZYL ALCOHOL BIS(2-CHLOROSOPROPYL)ETHEF 2-METHYLPHENOL HEXACHLOROETHANE N-NITROSODI-N-PROPYLAMINE 3&4-METHYLPHENOL NITROBENZENE 15COPHORONE 2-NITROPHENOL 2,4-DIMETHYLPHENOL BIS(2-CHLOROETHOXY)METHANE 2,4-DICHLOROPHENOL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	4570 BY SW8270	10	87% 87% 87% ND ND <20 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	86% NDI ND ND <20 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	107% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	92% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	100% <100 <100 <100 <100 <100 <100 <100	102% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	100% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	106
TOL-D8 SURROGATE RECOVERY BFB SURROGATE RECOVERY SEMI-VOLATILE ORGANIC COMPI PYRIDINE N-NITROSODIMETHYLAMINE BIS(2-CHLOROETHYL)ETHER PHENOL 2-CHLOROPHENOL 1,4-DICHLOROBENZENE 1,2-DICHLOROBENZENE BENZYL ALCOHOL BIS(2-CHLOROISOPROPYL)ETHEF 2-METHYLPHENOL HEXACHLOROETHANE N-NITROSODI-N-PROPYLAMINE 13&4-METHYLPHENOL NITROBENZENE ISOPHORONE 2-NITROPHENOL 2,4-DIMETHYLPHENOL BIS(2-CHLOROETHANE 1-2-DICHLOROETHONE 1-2-DICHLOROETHONE 1-2-DICHLOROETHONE 1-2-DICHLOROETHONY)METHANE 2,4-DICHLOROPHENOL 2,6-DICHLOROPHENOL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	4570 BY SW8270 11 250	10	87% 87% 87% ND ND <20 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	86% NDD ND ND <20 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	107% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	92% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	100% <100 <100 <100 <100 <100 <100 <100	102% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	100% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	106
TOL-D8 SURROGATE RECOVERY BFB SURROGATE RECOVERY SEMI-VOLATILE ORGANIC COMPOUNT OF THE PYRIDINE N-NITROSODIMETHYLAMINE BIS(2-CHLOROETHYL)ETHER PHENOL 2-CHLOROPHENOL 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE 1,2-DICHLOROBENZENE BENZYL ALCOHOL BIS(2-CHLOROISOPROPYL)ETHEF 2-METHYLPHENOL HEXACHLOROETHANE N-NITROSODI-N-PROPYLAMINE 3&4-METHYLPHENOL NITROBENZENE ISOPHORONE 2-NITROPHENOL BIS(2-CHLOROISOPROPYL)ETHEF 2-LITROPHENOL BIS(2-CHLOROPHENOL 2,4-DIMETHYLPHENOL BIS(2-CHLOROPHENOL 2,4-DICHLOROPHENOL 2,6-DICHLOROPHENOL 1,2,4-TRICHLOROPHENOL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	4570 BY SW8270	10	87% 87% 87% ND ND <20 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	86% NDI ND ND <20 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	107% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	92% <100 <100 <100 <100 <100 <100 <100 <1	100% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	102% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	100% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	106
TOL-D8 SURROGATE RECOVERY BFB SURROGATE RECOVERY SEMI-VOLATILE ORGANIC COMPI PYRIDINE N-NITROSODIMETHYLAMINE BIS(2-CHLOROETHYL)ETHER PHENOL 2-CHLOROPHENOL 1,4-DICHLOROBENZENE 1,2-DICHLOROBENZENE BENZYL ALCOHOL BIS(2-CHLOROISOPROPYL)ETHEF 2-METHYLPHENOL HEXACHLOROETHANE N-NITROSODI-N-PROPYLAMINE 13&4-METHYLPHENOL NITROBENZENE ISOPHORONE 2-NITROPHENOL 2,4-DIMETHYLPHENOL BIS(2-CHLOROETHANE 13&4-METHYLPHENOL SOPHORONE 2-NITROPHENOL 2,4-DIMETHYLPHENOL BIS(2-CHLOROETHOXY)METHANE 2,4-DICHLOROPHENOL 2,6-DICHLOROPHENOL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	4570 BY SW8270	10	87% 87% 87% ND ND <20 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	86% NDD ND ND <20 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	107% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	92% <100 <100 <100 <100 <100 <100 <100 <1	100% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	102% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	100% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	106
TOL-D8 SURROGATE RECOVERY BFB SURROGATE RECOVERY SEMI-VOLATILE ORGANIC COMPOUNT OF THE PYRIDINE N-NITROSODIMETHYLAMINE BIS(2-CHLOROETHYL)ETHER PHENOL 2-CHLOROPHENOL 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE 1,2-DICHLOROBENZENE BENZYL ALCOHOL BIS(2-CHLOROISOPROPYL)ETHEF 2-METHYLPHENOL HEXACHLOROETHANE N-NITROSODI-N-PROPYLAMINE 3&4-METHYLPHENOL NITROBENZENE ISOPHORONE 2-NITROPHENOL BIS(2-CHLOROISOPROPYL)ETHEF 2-LITROPHENOL BIS(2-CHLOROPHENOL 2,4-DIMETHYLPHENOL BIS(2-CHLOROPHENOL 2,4-DICHLOROPHENOL 2,6-DICHLOROPHENOL 1,2,4-TRICHLOROPHENOL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	4570 BY SW8270	10	87% 87% 87% ND ND <20 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	86% NDI ND <20 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	107% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	92% <100 <100 <100 <100 <100 <100 <100 <1	100% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	102% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	100% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	106
TOL-D8 SURROGATE RECOVERY BFB SURROGATILE ORGANIC COMPONIC BIS(2-CHLOROBENZENE BFB SUZYL ALCOHOL BIS(2-CHLOROBENZENE BRACHLOROBENDE BRACHLOROPHENOL BIS(2-CHLOROPHENOL BIS(2-CH	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	4570 BY SW8270 11 250	10	87% 87% 87% ND ND S10	86% NDI NDI C=20 C=10 C=10 C=10 C=10 C=10 C=10 C=10 C=1	107% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	92% <100 <100 <100 <100 <100 <100 <100 <1	100% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	102% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	100% <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	106

Table 2
Treatment Plant Quarterly Effluent Sampling Results continued...

SAMPLE MONTH:		ROD	KPDES	MARCH	JUNE	SEPT	DEC	MARCH	JUNE	SEPT	Jan
DATE COLLECTED:		Requirements	Requirements	3/18/05	6/25/05	9/9/05	1/6/06	3/29/06	5/31/06	9/6/06	12/15/06
SEMI-VOLATILE ORGANIC COMP	OUNDS	BY SW8270 continued	ACTOR TO STATE OF THE STATE OF	100 100 10 10		1905 Tal 1808		1870ton - Wak	100	Str. 10 - 2020/step	
2-METHYLNAPHTHALENE	ug/L	1		· <10:	<10	<10:	<10	<10	<10'	<10 ¹	<1
HEXACHLOROCYCLOPENTADIEN	E ug/L			<10	<10:	<10	<10	<10	<10	<10	<1
2,4,6-TRICHLOROPHENOL	·ug/L		108 10	<10	<10	<10	<10	<10	<10	<10	<1
2.4.5-TRICHLOROPHENOL	ug/L		To the to conserve	<10:	<10	<10	<10	<10	<10	<10	<1
2-CHLORONAPHTHALENE	ug/L	E aren to ascrete so soon root	i so to to	<10,	<10	<10	<10	<10	<10	<10:	<1
2-NITROANILINE	ug/L	a b a suppose and a		<50	<50	<50	<50	<10	<10	<50	- <5
DIMETHYL PHTHALATE	ug/L		la su au son s	<10	<10	<10	<10	<10	<10	<10	<1
ACENAPHTHYLENE	ug/L	23	para recultura araba esta estatura en	<10	<10	<10	<10	<10	<10	<10.	<1
2.6-DINITROTOLUENE	ug/L			<10	<10	<10	<10	<10	<10	<10	<1
ACENAPHTHENE		a process and a con-		<10	<10	<10	<10	<10:	<10	<10	<1
3-NITROANILINE	rug/L			<50	<50	<50	<50:	<10.	<10	<50	\! <5
2,4-DINITROPHENOL	ug/L		ina a mada mada	<10	<10	the second secon	<10:	<10	<10	<101	<1
	ug/L		de la constant	W 10 10 10 10 10 10 10 10 10 10 10 10 10	<10	<10	<10	<10	<10	March 1997 March 1997	· · · · · · · · · · · · · · · · · · ·
4-NITROPHENOL	ug/L		pro recommendada	<10!		<10	· · · · · · · · · · · · · · · · · · ·	C-100		<10	181 DR DR 181 DR
DIBENZOFURAN	ug/L	.	1 0 <u>0</u> 0-0 0	<10	<10	<10	<10	<10	<10	<10	<1
2,4-DINITROTOLUENE	ug/L	 	5	<10	<10	<10	<10:	<10	<10	<10	<u><1</u>
FLUORENE	ug/L		1 1 5 5 <u>2</u> 55 5	<10	<10	<10	<10	<10	<10	<10	<1
DIETHYL PHTHALATE	ug/L	- 1	5	<10	<10	<10	<10	<10'	<10	<10	<1
4-CHLOROPHENYL PHENYL ETHE	ACCURAGE AND ADDRESS.	10 CON PRI O II DE		<10	<10	<10	<10	<10	<10	<10	<1
2-METHYL-4,6-DINITROPHENOL	ug/L		L	<10	<10	<10	<10,	<10,	<10	<10	<1
4-NITROANILINE	ug/L			<50 ·	<50	<50	<50	<10	<10	<50!	<5
N-NITROSO-DIPHENYLAMINE	ug/L	W		<10	<10	<10	<10	<10.	<10	<10!	<1
4-BROMOPHENYL PHENYL ETHE	R ug/L	4570	10	<10 ₁	<10	<10	<10	<10	<10:	<10	<1
HEXACHLOROBENZENE	lug/L			<10	<10	<10	<10	<10	<10	<10:	<1
PENTACHLOROPHENOL	jug/L		165 15 155 15 15 15 15 15 15 15 15 15 15 1	, <50	<10	<10	<10	<10.	<10:	<10	<1
ANTHRACENE	iug/L	. 200		<10	<10	<10	<10	<10 ⁻	<10	<10	<1
PHENANTHRENE	ug/L	I Date The Att of	so tite followers	<10	<10	<10'	<10.	<10	<10.	<10	<1
CARBAZOLE	ug/L		pen n s ns	<10	<10	<10	<10.	<10	<101	<10	<1
DI-N-BUTYL PHTHALATE	ug/L		production of the second	<10	<10	<10	<10:	<10	<10	<10	<1
FLUÖRANTHENE	ug/L		20 0.00 0.00 0.00	<10	<10	<10	<10	<10.	<10	<10	<1
BENZIDINE	ug/L			<101	<10	<10	<10	<10	<10	<10]	<1
PYRENE	ug/L	to promoved to the	In a st	<10	<10	<10	<10	<10	<10	<10	<1
BENZYL BUTYL PHTHALATE	ug/L		proces that the state of the	<10	<10	<10	<10	<10	<10	<10	<1
BENZO(A)ANTHRACENE	ug/L	ana a na an an	area at 1880 BARRA 18 8860	<10	<10	<10	<10	<10	<10	<10	<1
3,3'-DICHLOROBENZIDINE	ug/L	nd ian ee m		<10	<10	<10	<10:	<10	<10	<10	\ <1
BIS(2-ETHYLHEXYL)PHTHALATE		anne e e e e		<10	<10	<10 <10	<10:	<10	<10	<10	
CHRYSENE	ug/L		ta con on a second		<10	<10	<10	<10	<10	<10	. <1
A man tire, became do me man man	ug/L			<10	A 14 14 14 14 14 14 14 14 14 14 14 14 14		<10	<10			<1
DI-N-OCTYL PHTHALATE	ug/L				<10	<10	mount amount of the first	2000	<101	<10	
BENZO(B)FLUORANTHENE	ug/L		lo es a s	<10	<10	<10	<10:	<10	<10	<10	<1
BENZO(K)FLUORANTHENE	ug/L	11		<10	<10	<10	<10	<10	<10	<10	<1
BENZO(A)PYRENE	ug/L		1	<10	<10	<10	<10	<10	<10	<10	<1
INDENO(1,2,3-C,D)PYRENE	ug/L		r Hana in the entre of the	<10	<10,	<10	<10.	<10	<10	<10	_ <1
DIBENZO(A,H)ANTHRACENE	ug/L			<10	<10	<10	<10	<10	<10	<10	<1
BENZO(G,H,I)PERYLENE	ug/L	AND MARKET THE WARREN	i	<10	<10	<10	<10	<10	<10	<10	<1
[Surrogate Rec B/N]	ug/L	L					-			1	
NITROBENZENE-D5	ug/L	250		29%!	74%	64%	68.00%	62%	26%	51%	66.40
2-FLUOROBIPHENYL	ug/L	The second secon	I	64%	80%	64%	62.00%	56%	22%	66%	76.40
P-TERPHENYL	ug/L	· · · · · · · · · · · · · · · · · · ·		130%	92%	112%	88.00%	54%	39%	49%	68.00
[Surrogate Rec Acids]	ug/L	1				www.to.land.com	-50(A)			e summerio Tito	33.
2-FLUOROPHENOL	ug/L			30%	44%	30%	37.00%	26%	10%;	27%	30.00
PHENOL-D6	ug/L	- (16%;	26%	38%	11.00%	20%	7%	14%	25.50
2.4.6-TRIBROMOPHENOL	ug/L	365000	. 10	69%	106%	80%	80.00%	73%	3%;	90%	72.80
2,4,0-110HOWOFTENOL	ug/L	!	† ' ''	- 0976	100%		00.0076		بر <u>ہ ۔ ۔ ۔ </u>	30%	- 12.00
_	1	3	250	- I		i 7).			2 N	<u> </u>	

Table 2 Treatment Plant Quarterly Effluent Sampling Results continued...

SAMPLE MONTH:		ROD	KPDES	MARCH	JUNE	SEPT	Jan	MARCH	JUNE	SEPT	Dec
DATE COLLECTED:	23	Requirements	Requirements	3/18/05	6/25/05	9/9/05	1/6/06	3/29/06	5/31/06	9/6/06	12/15/06
METALS Compound by SW846, 6010		54L 35	30 30 10 000 1								
PARAMETERS	UNITS		ACCOUNT OF THE PARTY OF THE PARTY.	19 ACONO DE COMPTANDO		*** (14% NAC) LEPTON		E TALES COMMENSOR			
Antimony	mg/L	0.062	1.6	<0.01 <0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	< 0.05	<0.
Arsenic	mg/L	0.011	1.6 0.05	<0.01	<0.01	<0.01	< 0.01	< 0.02	< 0.02	< 0.02	<0.0
Barium .	mg/L	0.231		0.075;	0.06	0.05	0.08	0.08	0.06	0.09	0.
Beryllium	mg/L	a seera e	0.0053	< 0.01	<0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.
	mg/L		0.0011	<0.01	<0.01	<0.01	<0.01	< 0.02	<0.01	<0.01	<0.
Calcium	mg/L		8 35 5	130	120	140	110.	150	110	126	1
	mg/L	0.011	0.011	<0.01	<0.01	< 0.01	<0.01	< 0.01	<0.01	<0.01	<0
	mg/L		0.012	<0.01	< 0.01	< 0.01	<0.01	< 0.01	<0.01	<0.01	<0.
	mg/L			0.11	0.13	0.12	0.07	0.17	0.19:	0.13	0.
	mg/L		0.0032	<0.01	<0.01	< 0.01	<0.01	< 0.01	< 0.01	<0.01	<0.
	mg/L			120;	110	106	94.9	140	115	125	1
	mg/L	57 653		0.02	0.13	0.16	0.02	0.02	0.18	0.94	o.
	mg/L	tel a late on a septem	0,000012	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.00
the second of th	mg/L	vs asas	0.16	<0.01	0.01	0.02	0.01	<0.01	0.02	0.02	0.00
Name and Associated and Associated Associate	mg/L	n na manife	0.005	<0.05	<0.01	<0.01	0.03	<0.01	<0.01	0.17	-······ · <0
Annual Control of the	mg/L	Magrapo sacial a	0.00012	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	- <0
Total a set to a server to	mg/L	0.011	0.04	<0.01	<0.01	<0.01	<0.01	<0.05	<0.01	<0.05	<0
	ma/L		0.11	0.02	0.02	0.04	<0.1	<0.01;	0.03	<0.01	0.
GENERAL INORGANICS	mg/L .		0.11	0.02	0.021	0.04	\0.1	₹0.01.	0.03;	V0.01:	
	UNITS	-									
	mg/L	THE REST CONTRACTOR OF THE PARTY OF THE PART		<5	<51	<5	<5	<5	44:	Б	
COD	mg/L	TO STAN INCOME.	2 2 3 7 8	23	21	221	<10	50	41) 82	52·	* 0
THE CONTRACT OF STREET	mg/L			<0.01:	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0
	mg/L	255 B N		<1.0	<1.0	30.01	<1.0	<1.0.	1.4	1.9	100.00
	mg/L	man are seen a seen again		2.3	2.4	2.6		2.86	2.3	3	
Nitrogen, Njeldani	mg/L				0.5	<0.5	1.36	<0.1	0.57		
	mg/L		m: m: v	<0.1; 0.66;	0.5	<0.02	A 18 18 18 18 18 18 18 18 18 18 18 18 18	0.66	0.57	0.81 2	<0
Nitrogen, Nitrite	mg/L	encare a a a pr	76 V 100000000 750 ¹				<0.1 2.05				
	mg/L			0.66	0.518	<0.05	****	2.86	<0.15	1.2	
	mg/L	30720 305E 00 00	a sa an us suna	15.7	23	12.2	16	14.8	16.6!	. 18 7.6	
A CONTRACT OF THE PROPERTY OF THE PARTY OF T	s.u.			7.5	7.61	7.7	7.9	7.5	7.95		
	mg/L		5 5 55 50	<0.2	0.12	0.15	<0.3	<0.80	<0.16	0.15	<0
	mg/L			0.1	0.1	0.2	0.11	0.1	0.11	0.2	
TDS	mg/L		NAS MARKANTE A	1800	1340	1440	0.12	2100	1600	1600	15
TSS	mg/L		e a grandent	<5	<5	3	<5	<5	<5;	5	
Turbidity	NTU .		*****	0.46	0.37	0.5	0.7	0.4	1.5	0.4	<
CHARLES AS ASSESSMENT IN THE PARTIES OF		AN INFORMATION OF INFORMATION AND	2 200 MINUTES IN 1	10 1000 10 10 10 10 10 10 10 10 10 10 10				A100-11-10			erro con como
a management over the contract of the contract				f i		l	W. W	in the second			34 40
	i	v. w 20 000000000000000000000000000000000	and the second s	E							
the care out of the second of											

Notes:
NA = Not analyzed
Laboratory analysis by Microbac Labs Louisville,Ky